Synthetic and Natural Analog Computation in Living Cells

Rahul Sarpeshkar

Analog Circuits and Biological Systems Group http://www.rle.mit.edu/acbs/

> Bits to Biology, CBA May 1st 2014

<u>ANALOG</u>	DIGITAL
1. Compute on a continuous set of numbers, e.g., [0,1], graded protein production from low to a maximum level.	l. Compute on a discrete set , e.g., {0,1}, protein produced at a maximum level or not present at all.
2. The basis functions for computation arise from the physics and chemistry of the computing devices such that the amount of computation squeezed out of a single genetic, RNA, or protein circuit is high.	2. The basis functions for computation arise from the mathematics of Boolean logic such that the amount of computation squeezed out of a single genetic, RNA, or protein circuit is low.
3. One wire or channel can represent many bits of information.	3. One wire or channel always represents one bit of information.
4. Computation is sensitive to the parameters of the molecular circuits.	4. Computation is less sensitive to the parameters of the molecular circuits.
5. Noise is due to thermal fluctuations in molecular devices.	5. Noise is due to round off error and temporal aliasing.
6. Signal is not restored at each stage of the computation.	6. Signal is restored at each stage of the computation
7. Robust at final and decisive outputs	7. Robust in every device and signal

R. Sarpeshkar, "Analog Synthetic Biology", Phil Trans. Royal Soc. A, 372:20130110, 2014

Analog vs. Digital

The relatively low-precision environment of cells makes analog computation efficient. Cells use analog and collective analog strategies to compute in an energy-efficient way.

R. Sarpeshkar, "Analog Synthetic Biology", Phil Trans. Royal Soc. A, 372:20130110, 2014

The Cytomorphic Mapping Between Analog Chemistry & Analog Electronics

Chemistry	Electronics	rgy
Molecular flux	Electron flow (current)	ree Ene
Chemical potential	Electronic potential (voltage)	-
Enzyme potential	Gate voltage	
exponentially controls reaction rate	exponentially controls current level	Log
Flux balance analysis	Kirchhoff's Current Law (KCL)	
Thermodynamic energy balance	Kirchhoff's voltage law (KVL)	
Stochastics of molecular shot noise	Stochastics of electronic shot noise	

R. Sarpeshkar, Ultra Low Power Bioelectronics, Cambridge Univ. Press, 2010

The Cytomorphic Mapping

Synthetic Biology

Analog Circuit Motifs

Cytomorphic Systems

DNA-Protein Circuit

R. Sarpeshkar, Phil. Trans. Roy. A, 2014

Electronic Circuit

Daniel et al, "Analog Transistor Models of Bacterial Genetic Circuits", 2011 BioCAS, pp. 333-336, 2011

Experimental data from *E. coli* bacterium

Linearizing Saturating Circuits with Synthetic Analog Positive Feedback

Daniel et al, NATURE, doi:10.1038/nature12148, May 2013

A 3-gene 'Biological Slide Rule' in Living Cells

Addition

y = 713.36ln(x) + 4112.2

 $R^2 = 0.9293$

10⁻¹

Division

Arab/AHL

10⁰

10¹

10²

10000

8000

6000

4000

2000

0

10⁻³

 10^{-2}

Fluorescence - RFP (a.u)

Digital Computation is a Special Case of Analog Computation

- Enables complex computation with 65x fewer parts than a prior in-vitro digital system.
- 2. Enables fine analog control of gene expression.
- Wide dynamic range molecular sensing over four orders of magnitude.

Subtraction

Square Roots & Power Laws

Daniel et al, NATURE, doi:10.1038/nature12148, May 30th 2013

An Analog Computation Approach to Biology

- 1. R. Sarpeshkar, Ultra Low Power Bioelectronics, Cambridge University Press, 2010.
- 2. Daniel et al, Analog Transistor Models of Bacterial Genetic Circuits, Proc. BioCAS, pp. 333-336, 2011.
- 3. Daniel et al, Synthetic Analog Computation in Living Cells, doi:10.1038/nature12148, May 30th 2013
- 4. R. Sarpeshkar, "Analog Synthetic Biology", Phil. Trans. Roy. A 372:2013.0110, 2014

http://www.rle.mit.edu/acbs/