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Abstract

How can molecules compute? In his early studies of reversible computation, Bennett imagined an
enzymatic Turing Machine which modified a hetero-polymer (such as DNA) to perform computa-
tion with asymptotically low energy expenditures. Adleman’s recent experimental demonstration
of a DNA computation, using an entirely different approach, has led to a wealth of ideas for how
to build DNA-based computers in the laboratory, whose energy efficiency, information density,
and parallelism may have potential to surpass conventional electronic computers for some pur-
poses. In this thesis, I examine one mechanism used in all designs for DNA-based computer –
the self-assembly of DNA by hybridization and formation of the double helix – and show that this
mechanism alone in theory can perform universal computation. To do so, I borrow an important
result in the mathematical theory of tiling: Wang showed how jigsaw-shaped tiles can be designed
to simulate the operation of any Turing Machine. I propose constructing molecular Wang tiles
using the branched DNA constructions of Seeman, thereby producing self-assembled and algo-
rithmically patterned two-dimensional lattices of DNA. Simulations of plausible self-assembly
kinetics suggest that low error rates can be obtained near the melting temperature of the lattice;
under these conditions, self-assembly is performing reversible computation with asymptotically
low energy expenditures. Thus encouraged, I have begun an experimental investigation of al-
gorithmic self-assembly. A competition experiment suggests that an individual logical step can
proceed correctly by self-assembly, while a companion experiment demonstrates that unpatterned
two dimensional lattices of DNA will self-assemble and can be visualized. We have reason to
hope, therefore, that this experimental system will prove fruitful for investigating issues in the
physics of computation by self-assembly. It may also lead to interesting new materials.
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Chapter 1 Contributions

1.1 Introduction to DNA-Based Computation

How can molecules be used to compute? The ground-breaking work of Adleman (1994) showed,
in analogy with in vitro selection techniques in combinatorial chemistry, how DNA sequences
can encode mathematical information and how simple sequences of standard molecular biology
experiments can be used to isolate the DNA which encodes the answer to a difficult mathematical
problem. I review this work, and its extensions by Lipton (1995). I place a complexity-theoretic
limit on what mathematical information can be isolated by n steps of affinity separation alone
and by n steps of affinity separation in combination with PCR amplification. This emphasizes
the contribution of Boneh et al. (1996a), who show a technique that uses affinity separation in
combination with ligation to overcome the limit.

Hagiya et al. (in press) proposed a novel experimental technique which promises to simplify
the selection process for DNA-base computation. In their technique, a single chemical reaction
based on PCR can perform a sequence of logical operations autonomously. I present a new analysis
of the computational power of this technique, highlighting the role of the combinatorial generation
of structured sets of DNA strands. I show how to solve the Formula Satisfiability, Independent
Set, and Hamiltonian Path problems using this technique, and I propose a novel extension of the
technique to solve the Circuit Satisfiability problem.

1.2 Models of Computation by Self-Assembly

Since Adleman’s original paper, every proposal for DNA-based computation has made use of the
sequence-specific hybridization of Watson-Crick complementary oligonucleotides. Most applica-
tions have been very straightforward, and the the most sophisticated use of this self-assembly is
still Adleman’s original technique for creating duplex DNA representing paths through a graph.
However, much more elaborate DNA constructs are possible, as epitomized by Seeman’s exten-
sive experimental research in DNA nanoconstructions: in addition to duplex DNA, hairpins, n-arm
junctions, and double-crossover molecules are all possible. Using this expanded vocabulary, what
computations can be done with self-assembly alone? To answer this question, I use the frame-
work of formal language theory to develop a model of DNA self-assembly in which such ques-
tions can be rigorously answered. The surprising result is that in the two-dimensional case the
self-assembly model is Turing-universal, and that natural restrictions of the model reproduce the
Chomsky Hierarchy of language families. These restrictions relate to the types of DNA building-
blocks used, and the form of their arrangement into larger structures: the self-assembly of linear
duplex DNA into linear polymers produces regular languages; the self-assembly of duplexes, hair-
pins and 3-arm junctions into dendrimers produces context-free languages; and the self-assembly
of double-crossover molecules into two-dimensional lattices achieves Turing-universality, produc-
ing recursively enumerable languages.

To make analysis possible, the theoretical models had to make several simplifying assumptions
that would not strictly hold in the real world. How severe is this inaccuracy, and is it plausible to
design DNA molecules whose real behavior mimics that of the model? The thermodynamics and
kinetics of DNA hybridization have been extensively studied, providing a solid foundation for a
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quantitative plausibility argument. To apply this knowledge to the two-dimensional case, one must
know whether multiple binding domains are cooperative. Using the assumption that binding ener-
gies are additive, I have developed equations for the kinetics of the two-dimensional self-assembly
process – akin to 2D crystal growth – and implemented the equations in a computer simulation.
The simulation results suggest error-free growth occurs when a system with low concentrations of
the DNA monomers is held near the melting temperature of the DNA lattice.

1.3 Experiments with Self-Assembly

Can the proposed models be implemented experimentally? The simulations made use of two
assumptions that had no direct experimental support: (1) that the envisioned two-dimensional
lattices can be made, independently of whether any computation can be embedded in them, and
(2) that the four binding domains in double-crossover molecule act cooperatively in a growing
two-dimensional lattice. I therefore performed experimental tests of these two hypotheses. Each
experiment involved three stages: the design of sequences for DNA oligonucleotides composing
the desired building blocks, the synthesis and self-assembly of those oligonucleotides into building
blocks and the subsequent self-assembly of the building blocks into larger structures, and the
experimental analysis and characterization of the resulting structures.

To assist in the design of sequences for the coming experiments, which involve many tens of
oligonucleotides and thousands of nucleotide positions, I developed software tools for evaluating
sequences according to various heuristic criteria and for automatically optimizing to find improved
sequences according to the criteria.

Question (2) was approached first. In work with collaborators Seeman and Yang, a 150-K
Dalton molecular system was designed to model the binding site in a growing two-dimensional
lattice of double-crossover molecules. As envisioned for the lattice, the binding site consisted of
two single-stranded DNA binding domains available for hybridization, separated by 20 nm. Co-
operativity was tested by competition of binding between two molecules. The target molecule had
perfect complementarity to both binding domains, while the ersatz molecule had perfect comple-
mentarity to one binding domain but 50% mismatches in the other domain. Even in the presence
of a 64-fold excess of the ersatz molecule, the target molecule was preferred in the binding site,
indicating cooperativity.

Question (1) was then addressed. I designed a system of two double-crossover molecules that
can self-assemble into a two-dimensional lattice. The double-crossover molecules and the result-
ing lattice were characterized by gel electrophoresis and visualized by atomic force microscopy.
Attaching a bulky DNA “arm” to just one of the double-crossover molecules produced stripes with
the expected period in the atomic force microscope images, confirming the correct lattice structure
of the self-assembled crystal. A similar system was investigated in Seeman’s lab.

These two properties, that double-crossover molecules can self-assemble into a two-dimensional
crystal and that the two binding domains at binding sites during lattice growth are cooperative, are
the key ingredients for a real implementation of the Turing-universal model of computation by
self-assembly of DNA.

1.4 Publication List

This thesis contains material from several conference publications and one journal article. I was
the first author on all papers, and the writing is primarily my own. The creative ideas and the
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actual labor for all the results presented here are due primarily to me, except where explicitly
noted. Some of the text and figures in this thesis come directly from those articles, although most
of it has undergone revision, and occasionally correction, for incorporation into this thesis. I am
solely responsible for any mistakes herein.

Chapter 2 uses material from:

Erik Winfree, “Complexity of Restricted and Unrestricted Models of Molecular
Computation” (Winfree 1996a).

Erik Winfree, “Whiplash PCR for O(1) Computing” (Winfree in press b).

Chapter 3 uses material from:

Erik Winfree, “On the Computational Power of DNA Annealing and Ligation”
(Winfree 1996b). The ideas in this paper, although due to me, were heav-
ily influenced by discussions with Seeman, in particular with respect to the
choice of the double-crossover molecule to implement the tiles.

Erik Winfree, Xiaoping Yang, Nadrian C. Seeman, “Universal Computation via
Self-Assembly: Some Theory and Experiments” (Winfree et al. in press).
Chapter 3 discusses the theoretical results in this paper, which are due en-
tirely to me.

Erik Winfree, “Simulations of Computation by Self-Assembly” (Winfree in press
a).

Chapter 4 uses material from:

Erik Winfree, Xiaoping Yang, Nadrian C. Seeman, “Universal Computation via
Self-Assembly: Some Theory and Experiments” (Winfree et al. in press).
Chapter 4 discusses the experiments reported in this paper. Seeman outlined
the experiments and designed the DNA sequences. Yang designed the exper-
imental details and supervised my execution of the laboratory techniques for
initial experiments. I designed and carried out all further experiments myself.

Erik Winfree, Furong Liu, Lisa A. Wenzler, Nadrian C. Seeman, “Design and
Self-Assembly of Two-Dimensional DNA Crystals” (Winfree et al. 1998).
This paper describes two parallel experimental investigations of an idea de-
rived from Winfree (1996b); the creative ideas in this paper are due to See-
man and myself. The experiments on DAE molecules were designed and car-
ried out by Liu, Wenzler, and Seeman; the experiments on DAO molecules
were designed and carried out by myself. Chapter 4 of this thesis presents
only the results on DAO molecules.

1.5 Support

My work at Caltech was supported by National Institute for Mental Health (Training Grant # 5
T32 MH 19138-07), General Motors’ Technology Research Partnerships program, and the Center
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for Neuromorphic Systems Engineering as a part of the National Science Foundation Engineering
Research Center Program (under grant EEC-9402726). My work at the University of Electro-
Communications in Tokyo, Japan was supported by the Japan Society for the Promotion of Science
“Research for the Future” Program, project JSPS-RFTF 96I00101.
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Chapter 2 Introduction to DNA-Based Computation

2.1 Why Compute with Molecules, and How?

All computers are physical objects, made from atoms and molecules, and are governed by the laws
of physics. For most purposes, this fact can readily be ignored, and computers can be analyzed
at a purely logical level. However, as Moore’s Law plays out and computers are built out of
ever smaller devices, the atomic, molecular, and quantum nature of those devices becomes ever
more important – as do the fundamental physical limits of computation, such as those imposed
by reversibility, heat generation, and thermal noise. The best architectures for computers built at
these scales may be very different from the ones we are familiar with now.

An examination of molecular biology provides important hints for information processing by
molecules. Some 5 � 109 bits of information are stored in the human genome, in the nucleus of
every living cell in your body, at a density near 1 bit per nm3. A single cell contains on the order of
109 active macromolecules (proteins, enzymes, polynucleotides,: : :) acting in parallel to control
the functions of the cell, despite thermal noise and the randomness inherent in diffusible elements.
However, it is not immediately clear what a cell is “computing,” or how one could make use of
molecular mechanisms like those in the cell for computing.

Still, to a computer scientist, the mechanisms look like computational primitives, and one of
the central themes of computer science has been that just about any grab bag of primitives is
theoretically sufficient for building a Turing-universal machine. We will see that the molecular
biology grab bag also suffices.

2.2 Computing Inverse Sets with DNA

Abstract1 In Adleman’s paradigm for solving combinatorial problems with
DNA, the problem to be solved is encoded as a sequence of experiments to be
performed upon a combinatorial library of DNA. We would like this sequence
of experiments to be as brief as possible. Thus we examine the expressive
power of different experimental paradigms. We begin with the formal models
of Lipton (1996b) and Adleman (1996), which make focused use of affin-
ity purification. The use of PCR was suggested in Lipton (1996b) to expand
the range of feasible computations, resulting in a second model. By giving
a precise characterization of these two models in terms of recognized com-
putational complexity classes, namely branching programs (BP) and nonde-
terministic branching programs (NBP) respectively, we show that PCR only
incrementally increases the computational power. However, the use of liga-
tion, introduced by Boneh et al. (1996b), results in a third model which does
significantly increase the computational power.

1Results in this section also appeared in Winfree (1996a). Thanks to Sam Roweis for stimulating discussions and to
Jehoshua Bruck for pointing me to previous literature on branching programs.
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Current interest in using DNA to compute was spurred by Adleman (1994), who brought
DNA-based computers out of the realm of theory and into experimental reality. Adleman’s key
insight was to avoid trying to use each DNA strand as a basis for a complex processor, and instead
to use a vast collection of simple DNA strands to collectively perform a single computation. In his
solution to the Hamiltonian Path Problem (HPP), he used standard molecular biology techniques
to perform two types of logical manipulation of the DNA. First, he used sequence-directed poly-
merization of oligonucleotides to generate a combinatorial set of DNA strands2 representing paths
through a graph G with n vertices. The sequences of the resulting strands encode the vertices
visited by each respective strand. Second, Adleman used a series of PCR reactions, gel elec-
trophoresis experiments, and affinity separations to get rid off strands in the combinatorial library
that surely didn’t represent the correct answer. Paths which weren’t length n were removed, then
paths which omitted vertex 1 were removed, and so on until paths which omitted vertex n were
removed. The remaining DNA represented valid answers to the problem.

This approach was quickly generalized by Lipton (1995), who noted that it is sufficient to
always start with the maximally diverse combinatorial library representing all 2n binary bitstrings,
and to filter that set down to the desired solution. In particular, he showed how to solve the
formula satisfiability problem (FSAT): given a Boolean formula with s terms in n variables, Lipton
showed how a series of O(s) affinity separation steps could be performed to find DNA which
encodes values to those variables which make the formula true. Because a minute 100 �l solution
can contain 1015 strands of DNA and a single laboratory operation processes all those strands in
parallel, at first glance it appears that for 2n < 1015 � 250, size n problems can be solved in O(n)
steps. As FSAT is among the hardest of the hard problems, this generated excitement.

Considered generally, molecular computation as introduced by Adleman (1994) provides a
new approach to solving combinatorial inverse problems, where we are interested in computing
f�1(1) where f(x) is a boolean function of n-bit strings x. Instances of NP-complete problems
can be expressed in this form; for example, in 3-SAT we ask if f�1(1) is non-empty for f given
as a 3-CNF expression. Adleman’s technique involves using individual DNA strands to represent
potential answer bit-strings x, then operating on a test tube containing all possible answers to
separate those which satisfy f from those which don’t. In many instances, the number of sorting
operations required is a low-order polynomial in n, suggesting that – given exponential space
to store the DNA – hard combinatorial problems can be solved efficiently with this technique.
Because the bounded resource of space to store the DNA is so critical, in this discussion we will
only consider using O(2n) strands. Using substantially more DNA, e.g. to search over additional
non-deterministic variables, is considered “cheating”. In other words, the question is, “Given a
fixed amount of DNA, what functions can we easily solve?”

It was not immediately clear, however, what class of boolean functions f could be efficiently
inverted. In a clarifying paper, Lipton (1996b) showed that if f can be represented as a size L
formula of AND-OR-NOT (AON) operations, then f can be inverted using 2L molecular steps
using affinity purification only. Lipton suggested further that the use of PCR to duplicate the
contents of a test tube would allow an even greater class of functions to be inverted using molecular
computation. In this note we follow his program and characterize exactly to what extent PCR
helps, in terms of known complexity classes.

As individual steps can take on the order of 15 minutes to an hour, small differences in com-
plexity quickly make the difference between feasible and infeasible experiments. Thus it is of

2The terms strand, oligonucleotide, oligo,and polynucleotideall refer single-stranded DNA molecules, and they are
all roughly interchangeable. However, “oligo” means “a few” and thus refers to short strands – a few tens of nucleotides.
A combinatorial set of DNA strands is called a combinatorial libraryfor short.
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importance to characterize the complexity of these models of molecular computation as carefully
as possible. Classes such as “polynomial-size” are too rough to be really useful – we really want
to know exactly what polynomial it is.

After defining the two models of molecular computation, we will demonstrate their correspon-
dence with branching programs, and conclude with a few implications of the correspondence.

2.2.1 Abstract Models of Molecular Computation

We use the models described in Lipton (1996b) and Adleman (1996), and use similar notation.
These models assume perfect performance of each operation, although in practice the molecular
biology techniques are known to be somewhat unreliable. Initial comments on this aspect of
the models, the origin of the names restricted modeland unrestricted model, and other practical
matters, can be found in Adleman (1996).

The Restricted Model:
A test tubeis a set of molecules of DNA encoding assignments of values to variables x1 : : : xn.

Each assignment, e.g., x17 = 1, is encoded using a unique DNA sequence, sufficiently dissim-
ilar from encodings of other assignments. Each DNA strands is simply the concatenation of all
assignment encodings. We operate on test tubes as follows:

� Separate[i]. Given a tube T and an index3 i, produce two tubes +(T; i) and �(T; i), where
+(T; i) contains all strings where bit i is set, and �(T; S) contains all strings where bit i is
cleared. Tube T is destroyed.

� Merge.Given tubes Ta and Tb, pour Tb into Ta thereby making Ta  Ta [ Tb. Tube Tb is
destroyed.

Separateis implemented using affinity separation based on the presence of the appropriate
DNA sequence (Adleman 1994), and the implementation of mergeis obvious. At the end of the
computation4, when we presumably have a single test tube containing all strings in f�1(1), we
can use the following operation to sequence the strings x in the test tube, as described in Adleman
(1996):

� Detect.Given a tube T , say ‘yes’ if T contains at least one DNA molecule, and say ‘no’ if
it contains none. Tube T is preserved.

The implementation of detectis based on PCR. A program5 is a sequence of operations on
labelled test tubes. Each statement is of the form:

h+(Ta; i)! Tb;�(Ta; i)! Tc; i;

where the arrow means “is to be merged with”. In other words, one separation and two merges
occur for every statement (but note that Tb or Tc may be empty prior to the merge). For clarity,

3We consider only the case where one variable at a time is tested. More sophisticated operations where multiple
DNF minterms are tested simultaneously (see Boneh et al. (1996b)) require more lengthy preparation; thus we argue
that the single variable case is not unreasonable for measuring complexity.

4We do not consider here whether Detectcould be used to advantage in the middle of a computation. Apparently, it
can be (Lipton 1996a).

5The class of programs as given here is slightly different from that given in Adleman (1996). In particular, we insist
that a labelled test tube is not re-used after its contents have been used (i.e. “destroyed”). The differences are merely a
matter of notation, and inconsequential.
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programs can be shown diagrammatically (see Figure 2.1). At the beginning, all test tubes are
empty except for T1, which contains all 2n DNA strands encoding all possible input vectors x. If
at the end of the program execution there is a test tube containing exactly those bit strings which
satisfy f , then we say say the program has inverted f , or has solved f . The sizeof a program
is considered to be the number of statements (here Separateoperations) in the program. Since
programs are considered to be executed sequentially, the size of a program to invert f is often
referred to as the time to solve f . The width of a program is the maximum number of test tubes
co-existing at any given time.

f(x) = “0 <
X
i

xi < 4”

Given T1 = f0; 1gn.

h+(T1; 1)! T3;�(T1; 1) ! T2; i

h+(T2; 2)! T5;�(T2; 2) ! T4; i

...

h+(T9; 4)! TT ;�(T9; 4) ! TT ; i

h+(T10; 4) ! TF ;�(T10; 4) ! TT ; i

Return TT .

1

22

333

4444

T  =  x

T  =  1

T  =  x

T  =  f(x) T  =  f(x)

T  =  x   x

1

2

T  =  "x  + x   + x    =  2"2 3 1

 T  F

 9

 3

 4

 2

 1

 1 1

 10T 

Figure 2.1: Implementing an arbitrary symmetric function in n(n+1)
2

separations using the re-
stricted model. Boxes represent separation steps, and arrows represent the test-tubes. Labels, in a
few illustrative examples, indicate the logical formula which every strand in the test tube satisfies.

The Unrestricted Model:
The unrestricted model allows one addition type of operation during the computation:

� Amplify. Given a tube T produce two tubes T1 and T2 with contents identical to T . T is
destroyed.

Amplifyis implemented using PCR. Programs for the unrestricted model consist of statements
similar to those for the restricted model, but with the additional form:

hTa ! Tb; Tc; i

Here the arrow means, “is to be copied into.” Unrestricted model programs can also be shown
diagrammatically (see Figure 2.2).

The unrestricted model, unlike the restricted model, can actually “circumvent” the restriction
on using only O(2n) strands, because the number of strands can be doubled with every amplify
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2

3

4

T  =  x

T  =  1

T  =  x

T  =  f(x)

1

 T

 3  2  1 1

1

4

1

2 3

T   IGNORE

Figure 2.2: Implementing the function f(x) = x4(x2 + x3) + x4(x1x2 + x1x3+ x3x2) using the
unrestricted model.

operation. We might expect that the unrestricted model is significantly more powerful than the
restricted model. Surprisingly, even though we allow the extra volume “for free”, there is little
benefit.

The Augmented Model:
The augmented model (introduced in Boneh et al. (1996b,a)) does not allow amplify, but

instead it adds a different type of operation to the restricted model. Here we make use of additional
variables xn+1 : : : which are not assigned values by the input.

� Append[xi = v]. Given an index i > n, a tube T whose strands each encode values for
variables fxjg not including xi, and a value v 2 f0; 1g, modify every strand by ligating the
DNA sequence encoding xi = v.

Programs for the augmented model consist of statements similar to those for the restricted
model, but with the additional form:

hTa  �i; i
Note that appendcannot assign a value to a variable which has already been set, and similarly we
restrict separateto cases where on every strand the separation variable has been assigned a value.
Only program for which this two properties can be guaranteed are considered valid. Augmented
model programs can also be shown diagrammatically (see Figure 2.3).

In the augmented model, like the restricted model, the number of strands remains constant at
2n. Nevertheless, we will see that the augmented model is more powerful than the unrestricted
model, and that the unrestricted model is more powerful than the restricted model.
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 TT   =  f(x)  FT   =  f(x)

2

T  =  11

4

+5

1 1

3

-5+5

3 1 2

55

Figure 2.3: An augmented model program implementing a function of unknown importance.

2.2.2 Branching Programs

Since branching programs are not as familiar a model as formulas, finite-state automata, circuits,
Turing machines, etc., it is worthwhile to present an exact definition here. We quote from Wegener
(1987), p. 414:

A branching program (BP) is a directed acyclic graph consisting of one source
(no predecessor), inner nodes of fan-out 2 labelled by Boolean variables and sinks of
fan-out 0 labelled by Boolean constants. The computation starts at the source which
is also an inner node. If one reaches an inner node labelled by xi, one proceeds to the
left successor, if the i-th input bit ai equals 0, and one proceeds to the right successor,
if ai equals 1. The BP computes f 2 Bn6 if one reaches for the input a a sink labelled
by f(a).

The size of a BP is the number of inner nodes. Many measures of BP have been studied,
especially depth and width.

We follow Razborov (1991) in defining a nondeterministic branching program (NBP): we
additionally include unlabelled “guessing nodes” of fan-out 2 where both branches are allowed7.
The NBP computes f 2 Bn if by some allowable path one reaches a sink labelled 1 for all
a 2 f�1(1). The size of an NBP includes the guessing nodes. BP and NBP may be viewed
pictorially, as in Figures 2.4 and 2.5, in which the designations “left” and “right” are replaced by
“dotted-line” and “solid-line” respectively.

6Bn is the set of all n-input boolean functions.
7This definition of NBP coincides exactly with Meinel’s 1-time-only nondeterministic branching programs. His

more general definitions seem not to be useful in the context of molecular computing.
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source
x1

x2

x3

x4

0

x3

x4

1

x2

Figure 2.4: Implementing PARITY of 4 variables using a branching program of width 2.

source

1

0

x1

x2

x3

x4x4

x5 x5

x6 x6

Figure 2.5: Implementing a function using a nondeterministic branching program. f(x) = “ x is
palindromic except for isolated (non-adjacent) errors”. NBP (f) � 2n+ 2.

We introduce one more modification of branching programs: write-once branching progams
(WOBP) are branching programs where the edges may be labelled to assign a value 1 (+) or 0 (-)
to any number of gate variables fgig, and where decision nodes may be labelled by a gate variable
instead of an input variable if all paths to that node assign a unique value to the gate variable.
Finally, we also consider circuits where each gate has arbitrary fan-out and computes any boolean
function of its 2 inputs.

2.2.3 Correspondence of Models

Restricted Model� Branching Programs
In this section we show that the class of functions which the restricted model can invert in a

given time are exactly those functions computed by a branching program of the same size.
Examining Figures 2.1 and 2.4, it is clear that not much needs to be proved. The models are

essentially identical, except for interpretation. Each separation step corresponds to an inner node
of the BP. A strand of DNA corresponds to an input vector for the BP. In summary:

1. If restricted model program P solves f in k steps, then there is a BP G which computes f
and is of size k.
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source
x1

x2

x3x3

x2 -g1

-g1

+g1 +g1

01

g1 g1

x4x4

Figure 2.6: A small width-2 WOBP.

(a)

x3

x2

x3

Figure 2.7: A circuit for the XOR of 3 inputs.

2. If BP G computes f and is of size k, then there is a restricted model program P which
solves f in k steps.

A single strand of DNA will flow through the test tubes of a restricted model program exactly
in the order of inner nodes executed by the associated BP running on an equivalent input vector8.
Since all possible strands are run in parallel, those that end up in the output test tube TT are exactly
the inputs that the BP accepts; i.e. f�1(1).

Unrestricted Model� Nondeterministic Branching Programs
In this section we show that the class of functions which the unrestricted model can invert in a

given time are exactly those functions computed by a nondeterministic branching program of the
same size.

Examining Figures 2.2 and 2.5, it is clear that not much needs to be proved. We additionally
associate amplifystatements with guessing nodes in the NBP. Just to be clear, we show:

1. If unrestricted model program P solves f in k steps, then there is a NBPG which computes
f and is of size k.

2. If NBP G computes f and is of size k, then there is a unrestricted model program P which
solves f in k steps.

8The author is reminded of some friends who needed to transfer a lot of graphics images from San Francisco to Los
Angeles. They considered using FTP over the internet, but on second thought realized it would be faster to put the data
in their car and drive, so they did. We are doing the same thing here: We physically move a bunch of DNA through the
virtual CPU, one gate at a time – but lots of data simultaneously.
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We use essentially the same argument as above. However now we say that the set of test tubes
which a DNA strand passes through is the same as the set of nodes of the NBP which could be
activated by the associated input vector. Thus the output test tube contains all strands which could
cause the NBP to accept; i.e. f�1(1).

Augmented Model�Write-Once Branching Programs
In this section we show that the class of functions which the augmented model can invert in a

given time are exactly those functions computed by a write-once branching program of the same
size.

Examining Figures 2.3 and 2.5, it is clear that not much needs to be proved. We additionally
associate appendstatements with writing nodes in the WOBP. Just to be clear, we state:

1. If augmented model program P solves f in k separationsteps, then there is a WOBP G

which computes f and is of size k.

2. If WOBPG computes f and is of size k, then there is a augmented model program P which
solves f in k separationsteps.

We use essentially the same arguments as above; the output test tube contains all strands which
cause the WOBP to accept, i.e. f�1(1), and additionally each strand maintains a record all written
variables.

The results of Boneh et al. (1996a) can be used to show that WOBPs are as powerful as circuits:

1. If a circuit C or size k solves f , then there is a WOBP G which computes f and is of size
� 3k.

2. If WOBP G computes f and is of size k, then there is a circuit C which solves f and is of
size k.

2.2.4 Corollaries and Conclusions

We now have a theoretical handle on precisely what can and cannot be computed by the restricted
and unrestricted models. First, by looking at the polynomial size complexity hierarchy, we can
separate the classes of functions solvable by the DNA models.

Many useful results follow immediately from the literature on branching programs. Here is a
brief sampler:

� poly-size BP are equivalent to log-space non-uniform TM9 (Meinel 1989).

� poly-size NBP are equivalent to log-space non-uniform NTM (Meinel 1989).

� poly-size circuits10 are equivalent to poly-time non-uniform TM (Wegener 1987).

� thus poly-size BP � poly-size NBP � poly-size circuits, where the inclusions are believed
to be proper.

� poly-size, constant-width BP are equivalent to log-depth circuits (Barrington 1986; Cai and
Lipton 1989).

9(N)TM = (nondeterministic) Turing machine.
10In this note we consider circuits where gates are fan-in 2, arbitrary fan-out, and have arbitrary logic.



14

function fn PARITY DISTINCT MAJORITY SYMMETRIC

LAON (f) n2 O(n2 logn) O(n3:37) O(n4:37)

n2 
( n2

log n
) 
(n2) 
(n log logn)

BP (f) 2n� 1 O(n log3 n) O( n
2

logn
)

2n� 1 
( n
2

log2 n
) 
( n log n

log log n
) 
( n log n

log log n
)

NBP (f) 2n� 1 O(n3=2)


( n
3=2

log n
) 
(n log log log� n)

C(f) n� 1 O(n log n) O(n) O(n)

n� 1 
(n) 
(n) 
(n)

Table 2.1: Lower and upper bounds on complexities under known models for various functions.

� 3
p
C(f) � NBP (f) � BP (f) � L(f) (Razborov 1991)11.

� C(f)
3
� BP (f) � L(f) + 1 (Wegener 1987)12.

With each of these results there is typically an efficient simulation (Pudlák 1987). Other
known linear simulations by branching programs include finite-state automata (FSA) and 2-way
finite-state automata (Barrington 1986).

As mentioned earlier, results on polynomial equivalence are only of theoretical and not prac-
tical relevance. We would like more exact bounds on the complexity of implementing specific
functions. The literature on branching programs gives us some such bounds, although admittedly
the knowledge is very incomplete. Some known bounds13 for a few functions14 are summarized
in Table 2.1.

2.2.5 Discussion

Do we gain anything by using the amplifyoperation? Theoretically, yes, but very little. Contrary
to the suggestion in Lipton (1996b), the unrestricted model does not allow us to invert functions
defined by circuits in linear time15. Furthermore, in addition to concerns about the reliability of

11C(f) is circuit size, L(f) is AON formula size, etc. F � G means F = O(G).
12Note this construction for formulas is better than that given in Lipton (1996b).
13See especially Wegener (1987): pp. 76, 85, 143, 243, 247, 261, 440; Razborov (1991): pp. 50, 51; Boppana and

Sipser (1990): pp. 793-797. Note Razborov incorrectly quotes the BP lower bound on MAJORITY (Babai et al. 1990).
The upper bound comes from Sinha and Thathachar (1994). The upper bound on formulas for symmetric functions
follows directly from the upper bound Wegener gives for MAJORITY. The upper bound on circuits for DISTINCT
comes from a simple application of SORT, followed by adjacent comparisons; a better bound may be achievable. The
upper bound on NBP for symmetric functions uses a construction by Lupanov for switching-and-rectifier circuits (see
Razborov (1991)); the construction also works for NBP.

14Let jxj denote the length of x and #x denote the number of 1’s in x. Let m =
n

2 log2 n
; jxij = 2 log2 n and

DISTINCT(x1; : : : ;xm) = 0 iff 9i 6= j s.t. xi = xj . MAJORITY(x) = 1 iff #x � n

2
where n = jxj.

PARITY(x) = 1 iff #x � 1 mod 2. f is SYMMETRIC if f depends only on #x. The lower bounds are for
almost all symmetric f .

15It appears that Lipton realized this shortly after distributing his draft. He later characterizes his constructions in
terms of contact networks, which are related to branching programs (Lipton 1995).
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PCR, we should realize that each amplifyat least doubles the volume of DNA that we have to han-
dle. After just a few such operations, we could practically be unable to continue the computation.
For example, if we conclude for practical reasons that 250 molecules of DNA are the most we can
handle in one test tube, then we must be very careful not to exceed this limit when merging the
products of amplification16. The augmented model of Boneh et al. (1996a), however, both avoids
the difficulties of the amplify operation and achieves inversion of functions defined by circuits.
Another model which achieves inversion of functions defined by circuits is the memory model of
Adleman (1996), which can be implemented via site-directed mutagenesis using the methods of
Beaver (1996) (who went further to show a full Turing machine simulation).

Because circuits are such a concise representation for most functions of interest, the aug-
mented model seems to provide an effective way to exploit the parallelism of DNA reactions to
solve inverse problems. However, for functions represented by circuits of size 1000, the required
3000 laboratory steps is still a lot to ask, especially since each affinity separation and ligation step
would take at least an hour if performed by a competent technician according to standard proto-
cols. It is not yet clear what the best biotechnology is for the separationand appendoperations,
nor what their intrinsic error rates must be. Methods to improve error rates due to misclassification
during separations (Karp et al. 1996; Roweis et al. in press) require multiplicative increases in the
number of steps, because each separation is repeated enough times to make classification errors
rare.

2.3 0(1) Methods for DNA Computation

Abstract17 This section introduces a more novel brand of DNA-based com-
puting wherein the problem to be solved is encoded entirely in the DNA se-
quences used, and a fixed sequence of experiments is performed. We focus on
the experimental technique of whiplash PCR, as introduced in Hagiya et al.
(in press) for DNA computation, in combination with combinatorial assem-
bly PCRto generate structured libraries. We introduce a model of compu-
tation based on this technique based on GOTO graphs, in which a number
of NP-complete problems can be solved in O(1) biosteps, including branch-
ing program satisfiability, the independent set problem, and the Hamiltonian
path problem. In addition, we propose a simple extension of the experimental
technique that allows single DNA strands to simulate the execution of a feed-
forward circuit, giving rise to a solution to the circuit satisfiability problem in
O(1) biosteps.

In an ingenious paper, Hagiya et al. (in press) introduce an experimental technique they call
polymerization stopand theoretically show how by thermal cycling, individual DNA molecules
can compute the output of Boolean �-formulas (and-or-not formulas in which every variable is

16On a similar note, even the restricted model can solve f computed by Meinel’s more general NBP model, simply by
using 2

m times more DNA volume when there are m non-deterministic variables. This allows computation as efficient
as circuits, but at the cost of ridiculous amounts of DNA.

17Results in this section also appear in Winfree (in press b). Thanks to Masanori Arita, Daisuke Kiga, Kensaku
Sakamoto, Shigeyuki Yokoyama, and Masami Hagiya for discussions of their work; and to Len Adleman for suggesting
the HPP example and the name “whiplash PCR.”



16

referenced at most once). Because each DNA molecule repetitively forms hairpins so that it can
serve simultaneously as both “primer” and “template” for a stopped polymerase reaction, Adle-
man has dubbed this experimental technique whiplash PCR. Hagiya et al. (in press) describe how
whiplash PCR can be used to solve the problem of learning �-formulas given positive and negative
data, and more recently Sakamoto et al. (in press ) has shown how other NP-complete problems
can be solved with whiplash PCR18.

The motivation for whiplash PCR begins with the interpretation of DNA polymerase as an en-
zymatic Turing Machine implementing the simply COPY operation. Bennett (1982) goes farther
and imagines designing a set of enzymes to simulate the operation of an arbitrary Turing Machine,
but these ideas were never implemented because of the difficulty of designing enzymes de novo.
But is the existing polymerase enzyme’s computational capability limited to just copying? Re-
cently, Leete et al. (in press) realized that the hybridization of primers in the polymerase chain
reaction (PCR) provides information-based control over the COPY operation, and that complex
computations (such as the symbolic expansion of determinants) can be carried out in DNA using
a series of PCR reactions. However, this is a very labor-intensive series of laboratory procedures,
and it has not yet been attempted experimentally. Hagiya et al. (in press) adds two key insights:
(1) that polymerase copying activity (which was initiated by the primer sequence) can be conve-
niently terminated by a “stop sequence” in the template DNA; and (2) that if the 30 end of a DNA
strand serves as the same strand’s primer, then an individual DNA molecule can be a self-contained
computational unit. It was shown how in a single reaction, each DNA strand can independently
compute the result of a �-formula, and how the problem of learning �-formulas from N positive
and negative examples can be solved in in O(N) biosteps. (We use the term “biostep” to refer to a
single laboratory procedure. Many chemical reaction steps can take place during a single biostep;
in whiplash PCR, the many chemical reactions are sequenced by thermal cycling.)

The DNA used in whiplash PCR has the form 50-stop1-new1-old1- � � � -stopn-newn-oldn-
head-30. When the 30 end (head) of the DNA strand anneals to a DNA sequence oldi, polymerase
copies the sequence newi, and the polymerase is stopped and dissociates upon encountering the
sequence stop (for example, because the stop sequence is GGG and the polymerase buffer con-
tains only A; T; and G). The head of the DNA now contains a new sequence. Upon the next
thermal cycle, the head can anneal to a different old location, and copy the corresponding new
sequence. We will refer to the basic DNA unit 50-stop-new-old-30 as a frameand use the notation
(new old). In general, boldface will be used when referring to DNA sequences, while italics will
be used when referring to logical variables.

We describe by example the method given in Hagiya et al. (in press) by which a single DNA
strand computes a �-formulas during whiplash PCR. Consider the �-formula f = (x1 _ x3) ^
(x2 _ x4). This can be translated to the decision process shown in Figure 2.8, wherein variable
x1 is checked first; if it is false (written False, 0, or �) then variable x3 is checked, etc. Decision
processes of this form are known as branching programs19; they have already arisen in the study
of DNA computing based on affinity separation (Winfree 1996a). Here we have the restriction that
each variable be accessed at most once; we call these �-branching programs. �-branching pro-
grams can represent more functions than �-formulas; in the absence of this restriction, branching
programs are provably more concise than formulas20.

18Sakamoto et al. (in press ) use the term successive localized polymerizationto allow for the possibility of inter-
molecular reactions as well as intramolecular reactions.

19Also known as binary decision diagrams.
20For example, the best known procedure for finding and-or-not formulas implementing symmetric functions results

in formulas of size O(n4:37), whereas branching programs of size O(
n
2

log n
) can be achieved.
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Figure 2.8: (a) A branching program for computing the �-formula (x1_x3)^(x2_x4). A possible
input would be x1 = 1; x2 = 1; x3 = 0; x4 = 1, which leads to output +. The computation
follows a path through the diagram, and thus can only access variables in the order prescribed. (b)
A branching program which does not correspond to a �-formula.

The translation of an n-variable �-branching program into DNA makes use of the 3n+2 DNA
sequences fx1;x�1 ;x+1 ; � � � ;x+4 ;out�;out+g. Each edge in the diagram, say the � edge from
node i to node j, is then converted into a DNA frame (xj x

�

i
), which may be read as “if xi is False,

check xj next.” A recursive formula is given in Hagiya et al. (in press) that converts any �-formula
directly into a sequence of DNA frames, the program frames. To tell the DNA the values of the
input variables, we use additional frames of the form (x+

i
xi), read as “xi has the value True;”

these are the data frames. The data frames and the program frames are concatenated into a single
strand of DNA, with an initial 30 head sequence complementary to x1. Figure 2.9 gives a full set
of frames used to implement f and shows how the computation proceeds during whiplash PCR:
the head initially anneals to the data region to read the value of x1; in the next thermal cycle, the
head anneals to the frame representing the appropriate edge out of node 1 in the program region,
to determine which variable must be checked next; in the next cycle, the head anneals again to the
data region, and so on21. Because the head might anneal to its previous location (in which case the
polymerase is immediately dislodged by the stop sequence and nothing happens), the computation
proceeds at approximately 1 logical step per two thermocycles. In this fashion, every DNA strand
computes in parallel, each containing its own data and its own program.

In the inductive inference problem discussed in Hagiya et al. (in press), one starts with a
combinatorial library of DNA representing all �-formulas of a given size. In each iteration, a
positive or negative input example is evaluated by each DNA strand: DNA representing the input
is ligated to all remaining DNA strands, which are then evaluated in parallel using whiplash PCR.
Those DNA strands computing the correct output value are retained, and the program region is cut
from the data and head regions in preparation for the next round of the iteration. After all input

21The restriction that each variable be used at most once arises because the value of the variable itself, encoded in
DNA as x�

i
, is used to keep track of where the computation is in the decision diagram; if there were two nodes which

check variable i, then the computation could return to the wrong place in the diagram because there would be two
frames matching x�

i
.
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data program

(out+ x4+)

(x4+ x4)

(x4 x2+)

(x2+ x2)

(x2 x1+)

(x1+ x1)

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

(x4+ x4) (x2+ x2) (x3- x3) (x1+ x1) (out- x3+) (x2 x3- ) (out+ x4+) (out- x4-) (x4 x2+) (out+ x2-) (x2 x1+) (x3 x1-) x1

Figure 2.9: Probable secondary structures during the computation of the �-formula (x1 _ x3) ^
(x2_x4) on the input 1101. “Probable” is in the mind of the artist. Note that the tick marks denote
the stop sequence; because the 30 head sequence will never contain the complement to the stop
sequence, this will be the site of a small bulge in regions that are shown as double-stranded.

examples have been processed, the only DNA programs that remain represent �-formulas which
agree with all examples, and the inductive inference problem has been solved in O(N) biosteps.

By starting with a combinatorial library of DNA representing possible inputs, Sakamoto et al.
(in press ) describe how whiplash PCR can also be used to solve other NP-complete problems, in-
cluding conjunctive-normal-form satisfiability (CNF-SAT), Vertex Cover, Direct Sum Cover, and
Hamiltonian Path. In the next two sections, we develop similar results for general formula satisfia-
bility (FSAT), branching program satisfiability (BP-SAT), Independent Set, and Hamiltonian Path.
We suggest the assembly graphformalism for the assembly PCR technique, and the GOTO graph
formalism for describing computations possible by performing assembly PCR and whiplash PCR
followed by a single affinity separation.

2.3.1 Solving FSAT in O(1) biosteps

Even though a single strand of DNA can only compute the result of a �-formula, it is possible
to solve the formula satisfiability problem in O(1) biosteps – without the restriction that each
variable can occur at most once.
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Consider the Boolean formula f = (x1 _ x2) ^ (x1 _ x3): It is a function of n = 3 variables,
and it accesses one of them more than once; thus it is not a �-formula. However, if we introduce
the new variables x11 = x12 = x1, then the same function is computed by the �-formula f̂ =

(x11 _ x2) ^ (x12 _ x3); with the additional constraint that x11 = x12.
In general, if f is a Boolean formula in n variables in which variable i is accessed �i times,

then we can construct a �-formula f̂ in n̂ =
P

n

i=1 �i variables, which computes the identical
function for input which is appropriately constrained. Specifically, for each 1 � i � n, we require
xi1 = : : : = xi�i .

We can use the biochemistry of whiplash PCR to compute the �-formula, and use the bio-
chemistry of hybridization to generate a combinatorial library of DNA representing all possible
inputs which obey the equality constraints. Following Adleman (1994), the combinatorial library
consists of DNA representing paths through a graph. We use bipartite assembly graphs, in which
nodes are either black or white and are labelled by distinct single symbols, and directed edges are
labelled by symbol strings (possibly length zero) whose symbols are disjoint from those used at
nodes. Each symbol represents a unique sequence of DNA. An oligo is generated for each edge
in the graph, using the sequences for the symbols of the origin node, the edge, and the destination
node: since the graph is bipartite, edges are either from white nodes to black nodes (in which case
“sense” oligos are synthesized), or from black nodes to white nodes (in which case the Watson-
Crick complementary “anti-sense” oligos are synthesized). These oligos may be mixed in a single
test tube and full-length product may be generated using assembly PCR22 (Stemmer et al. 1995).
This reaction creates long “repetitive” DNA, which may then be cut at a restriction site to yield
defined-length product, and then made single-stranded. For each path through the graph, the se-
quence of node and edge symbols on that path will be generated in DNA by assembly PCR; the
complementary DNA will also be generated23. Figure 2.10 gives an assembly graph for generating
all DNA representing inputs where x11 = x12.
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Figure 2.10: An assembly graph for generating input to the formula (x1 _ x2) ^ (x1 _ x3). Up to
2n + 1 oligos are required, and additional symbols Pi are used. For convenience, the node P0 is
written twice. Since there will be a restriction site in P0, this results effectively in paths from the
leftmost node to the rightmost.

Thus, for any �-formula f̂ , we can generate a combinatorial library of DNA representing all

22This technique is preferred over annealing and ligation due to its improved yield and accuracy; it was used in
Ouyang et al. (1997) to create a full library of 6-bit inputs. Note that if the oligos are simply annealed, there are gaps in
the double-stranded DNA; these gaps are filled in by the polymerase during assembly PCR. If, as in Adleman (1994),
ligation rather than assembly PCR is preferred, then additional oligos must be generated complementary to the frames
on the “anti-sense” strands. Of course, for either ligation or assembly PCR to be effective, careful design of the oligos
is required; see, for example Deaton et al. (in press).

23To be assembled by ligation, no gaps may be present in the the “sense” strand; therefore all “anti-sense” edges
must be labelled by the empty string, or additional oligos complementary to the single-stranded “anti-sense” regions
must be synthesized. A general assembly graph can be easily transformed into one suitable for ligation by either of
these two modifications.
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possible inputs satisfying the equality constraints fxi1 = : : : = xi�ig. After assembly of the
input DNA, DNA representing f̂ can be ligated to the end of all input DNA, the whiplash PCR
reaction performed, and DNA whose 30 end is out+ extracted. This DNA contains the input
which satisfies the original formula f . We have solved FSAT in O(1) biosteps (granting that the
number of thermocycles necessarily will scale with the size of the formula). The exact procedure
described above can also be used for the slightly more difficult BP-SAT problem.

2.3.2 Combinatorial Sets of GOTO Programs

We would now like to generalize the techniques used to solve FSAT. To solve FSAT, a sequence
of three laboratory procedures was employed: combinatorial generation of DNA by assembly
PCR, evaluation of �-formulas by whiplash PCR, and selection of DNA evaluating to True by
affinity separation. Here we introduce a new formalism to describe the computations which can
be performed in this manner; this formalism suggests several optimizations and new applications
of whiplash PCR.

Our interest comes from the following simple observation: On a given strand of properly
constructed DNA, whiplash PCR can be considered as executing a BASIC program consisting
entirely of GOTO statements: e.g. the DNA frame (xj xi) can be thought of as “Line i: GOTO
line j”, or just i ! j. The special “line numbers” are START = 1, ACCEPT = out+ and
REJECT = out�. The sequential order in which the GOTO statements appears does not matter,
but no line number may appear on the left hand side twice. By using combinatorial synthesis to
create a huge number of different programs, and extracting the accepting ones, we are able to
solve some interesting mathematical problems. We define a combinatorial set of GOTO programs
using a bipartite assembly graph where edges are labelled (possibly with repetition) by GOTO
statements and nodes are labelled (uniquely) from Pi. We will insist that all paths generate valid
GOTO programs, in which no line number appears twice on the left hand side24. This implies,
among other things, that the graph has no cycles.

Thus, we consider the following question: Given a graph as defined above, is there a path that
generates a GOTO program that reaches ACCEPT when started at line 1? Call this the GOTO
graph satisfaction problem, or GG-SAT. GG-SAT thus formalizes what can be computed in O(1)
biosteps by applying assembly PCR followed by whiplash PCR and affinity separation.

As an example, we will reduce BP-SAT to GG-SAT. Three resource measures of importance
are the number of paths through the graph (corresponding to the number of DNA strands gener-
ated); the maximal length of the GOTO programs thus generated (corresponding to the length of
the DNA strands); and the size, in number of edges, of the GOTO graph (corresponding to the
number of DNA oligos that must be synthesized). Then, as shown in Figure 2.11(a), n-variable
m-node BP-SAT can be solved by creating 2n programs of length 2m + n, using a GOTO graph
of size 2(n+m). m lines of the program are fixed; the other m lines are generated in independent
blocks of �i lines, with two possibilities for each.

This notation makes it obvious that the fixed portion of a GOTO graph is redundant; we can
reduce each graph to a smaller one by following all the GOTOs in the fixed portion. The example
in Figure 2.11(a) reduces to just 3 nodes as shown in Figure 2.11(b). Thus we get the improved
theorem that n-variable m-node BP-SAT can be solved by creating 2n programs of length m

using a GOTO graph of size 2n. The m lines are generated in independent blocks of �i lines, with
two possibilities for each. Because this decreases both the length of the DNA and the number

24DNA programs in which a line number appears more than once on the left hand side would execute
probabilistically.
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(a)

input regionz }| {
program regionz }| {1!6

1!7

2!8; 3!10

2!9; 3!11

4!12; 5!14

4!13; 5!15

6!2 7!3 8!5 9!4 10!4 11!5 12!� 13!+ 14!+ 15!�

(b) combined input and program regionz }| {
1!2

1!3

2!5; 3!4

2!4; 3!5

4!�; 5!+

4!�; 5!+

Figure 2.11: Reducing BP-SAT to GG-SAT: the n = 3; n̂ = 5 example. (a) The direct
construction, combining the assembly graph from Figure 2.10 and the �-formula program for
(x11 _ x2)^ (x12 _ x3). (b) The optimized construction obtained by following GOTO statements
in the fixed region of (a). All GOTO programs are of length 5.

of cycles to complete the program, this construction could be important for experiments solving
BP-SAT. It would be interesting to find general polynomial-time algorithms for “optimizing” or
“compressing” arbitrary GOTO graphs, in the sense that the new graph solves the same problem
but contains fewer paths and/or shorter programs.
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Figure 2.12: A GOTO graph for solving the Independent Set Problem. Inputs are generated in
which exactly k = 3 out of n = 8 variables have value 1. The edge labels “0” and “1” in column
i are shorthand for GOTO statements setting the value of variable xi; as in FSAT, variables which
are referenced more than once in the formula must be duplicated, and the corresponding edges in
the graph will be labelled with more than one GOTO statement. Note that concentration ratios of
the oligos could be adjusted to make all paths equally likely (for ligation-based assembly, at least;
it is not so clear for assembly PCR).

However, we are still failing to fully exploit the expressive power of the graph; so far we
have considered only essentially linear graphs. In the context of circuit satisfiability, Boneh
et al. (1996a) commented that providing a regular language as input to the circuit, rather than
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just f0; 1g� , could for some problems both reduce the size of the circuit and decrease the vol-
ume of DNA needed to solve the problem, and that the desired n-bit input can be provided by
assembling DNA paths through a graph of size nM , where M is the size of a finite state machine
recognizing the regular language. The same comment holds true for BP-SAT. A simple exam-
ple follows from the ideas in Bach et al. (1996): the polynomial time 2SAT problem becomes
NP-complete when given the restriction that satisfying solutions must have exactly k ones. An
instance is the Independent Set Problem, which asks, given an undirected graph and an integer k,
is there a subset of k vertices which have no edges among themselves? The 2-CNF formula we
will use for this problem is

^es=1(xis _ xjs)
where the graph has edges [i1; j1] : : : [ie; je] and xi indicates membership in the independent set.
The formula simply checks that no two chosen vertices have an edge between them. To solve the
problem, we ask for a solution to this formula in which exactlyk variables are 1. This is done in
DNA by generating only inputs with k variables set. A GOTO graph for this problem is shown in
Figure 2.12; variables used more than once must be duplicated, and the fixed GOTO statements in
the “program region” can be eliminated just as in the BP-SAT optimization.
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Figure 2.13: Solving the Hamiltonian Path Problem: A graph G (a) and its corresponding GOTO
graph GG (b). This is Adleman’s example with 2 additional edges added to prevent pruning from
simplifying the GOTO graph to triviality. For convenience the nodes show only the vertex index
i, and not the full symbol Pik .

As a final example, we consider the Hamiltonian Path Problem (HPP) solved in Adleman
(1994). Our procedure begins by converting (in polynomial time) the original graph G into a
GOTO graph GG. Suppose G has n vertices; then GG will have n2 vertices, arranged in layers,
such that if there is an edge [i; j] in G, then in the GOTO graph, for each k 2 f2 � � � ng there is
an edge [Pik�1 ; Pjk ], labelled i ! (i + 1) (with ACCEPT = n). Since we are only interested
in paths from vertex 1 to vertex n, we prune the new graph to include only vertices which may
be reached from P11 and which may reach Pnn ; this dynamic programming problem takes time
O(n2) on an electronic computer. We now have the GOTO graph GG, as shown in Figure 2.13. If
G has E edges, then GG requires less than E2 oligos.

Every path through GG represents a length n path through G from vertex 1 to vertex n. A
Hamiltonian path will contain, in some order, the frames

f1! 2; 2! 3; � � � ; (n� 1)! ACCEPTg;
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and thus the GOTO program, as executed by whiplash PCR, will proceed to ACCEPT . All other
paths will duplicate some frame and lack another – these GOTO programs will terminate and
never reach ACCEPT . Consequently, extraction of DNA containing the ACCEPT sequence
will identify the Hamiltonian path, and we have solved HPP in O(1) steps.

2.3.3 Single-Strand Computation of Boolean Circuits

Using whiplash PCR in the manner suggested in Hagiya et al. (in press), where exactly one symbol
is copied in each polymerization stop step, gives each strand exactly the computational power of a
GOTO program, and no more. However, whiplash PCR may give each strand more computational
power, if copying more than one symbol is experimentally feasible. The idea is this: when the
head of the DNA strand is being extended, it might not only change the “state” of the head but
also add a new “program” frame.

Suppose for the moment that the variables xi are encoded by x
i
;x+

i
;x�

i
using A, T, and C,

and that the new gatevariables gi are encoded by g
i
;g+

i
;g�

i
using exclusively A and T . G and C

are respectively used for representing the stop sequence and its complement. The polymerization
buffer still includes A, T , and G, but not C . The restricted alphabet used for the gate symbols
makes designing DNA sequences a more difficult task25, but it is necessary for the construction
we give below because now a gate symbol can be copied by polymerase twice during whiplash
PCR.

In our original discussion of branching programs, a + edge from the node reading x7 to
the node reading x4 would be encoded by the frame (x4 x

+
7 ). During biochemical execution

with whiplash PCR, a transition through this edge would entail hairpin formation with binding
to x+7 and polymerase extension copying x4, as shown in Figure 2.14(a). Our new proposal
involves copying more than x4 during the polymerase extension, thereby memorizing an interme-
diate result of the computation. In Figure 2.14(b) we show the execution of an enhanced frame
(x4 (g

+
8 g8) (g

�

5 g5) x
+
7 ). Here, the original DNA encodes for the “anti-sense” of a valid frame,

and thus the frame is inactive, or hidden. The two hidden frames present here are intended to
assign values to new variables g5 and g8, but that assignment will not become effective while the
frame is still hidden. However, if the enhanced frame is executed, the hidden frames are copied as
“sense” frames onto the growing 30 end of the DNA, thus activating the hidden frames for potential
future use. The final 30 sequence of the DNA will still be x4, which will determine the immediate
course of the computation as usual.

At subsequent points in the evaluation, reference can be made to look for the values of g5 or
g8. These values will be found by the head hybridizing to the newly activated frames and copying
to the GGG stop sequence – only now the head will not be hybridizing to the “input” part of the
DNA, but to part of the growing “head history” itself.

What is the use of activating hidden frames? The possibility of memorizing intermediate re-
sults gives rise to a model of computation that we call write-once branching programs(WOBP)26.
Each node still has two outgoing edges, one labeled + and the other �; however, edges may now
also have the additional labels �gi, which indicate that the variable gi is to be assigned the value

25An expanded DNA alphabet, making use of artificial base pairs which are both highly specific and can be incorpo-
rated by DNA polymerase, would allow greater flexibility in sequence design; indeed, Sakamoto et al. (in press ) reports
preliminary studies of using iso-C and iso-G (Switzer et al. 1993) in whiplash PCR. If this chemistry is successful, the
variables xi and gi could be encoded using A, T , C, and G; the stop sequence could be iso-G-iso-G-iso-G and its
complement iso-C-iso-C-iso-C; and the polymerization buffer could contain A, T , C, G, and iso-G.

26This model can also be used to describe DNA computation performed by a sequence of affinity separations and
ligations, as in Boneh et al. (1996a).
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Figure 2.14: (a) The polymerization stop step on a standard frame, where a single symbol is
copied, and its representation as an edge in a BP. (b) The polymerization stop step on an enhanced
frame, where two hidden frames are made active, and its representation as an edge in a WOBP.

+ or �. For implementation using whiplash PCR, a restriction is imposed: again, a given variable
may be read at most once, and nodes may be labeled to read any input variable xi or any gate vari-
able gi, so long as all paths to a given node have assigned exactly one value to the gate variable
being read27. We call these restricted programs �-WOBP.
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+g5

+g6

-g5
-g6

-g6
-g5x3

x2

(b)

x2

x3

x1

(a)

Figure 2.15: (a) Input variables with multiple fan-out are handled by reading them once, and writ-
ing multiple distinct gate variables which may subsequently be read once each. (b) The translation
of a gate with fan-out 2 into a write-once branching program requires two decision nodes (only
one of which is guaranteed to be used). Two new gate variables are written. To translate an en-
tire circuit, first the input variables and then the gates would be processed in linear order in the
branching program. Clearly, much more efficient translations are possible; for example, gates with
fan-out 1 need not be memorized.

�-WOBP are at least as concise as circuits28; a circuit with n inputs accessed in total n̂ times,
and g gates with total gate fan-out p can be implemented in a �-WOBP using no more than n+2g

nodes and n̂ + p gate variables29. The simple construction uses the building blocks shown in

27Again, we have a probabilistic model if this restriction is violated.
28The converse is also true: a circuit can be constructed in which (usually) two gates are used for each edge in the

WOBP to test if the edge was traversed during computation. Thus a circuit with 3m gates can be constructed from a
WOBP with m nodes.

29Just 2g nodes and p gate variables are required if we allow preparing the input with duplicated variables, as in the
FSAT construction.
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Figure 2.15. First, each input variable xi is read and duplicated into �i new variables, so every
subsequent read uses a unique variable. Then, each circuit gate is processed in turn, and its output
is stored in a new gate variable (or variables, if the gate has fanout greater than unity). The
translation of a small circuit is shown in Figure 2.16. Thus, we can theoretically solve the circuit-
SAT problem in “one pot” using whiplash PCR.

In the case shown in Figure 2.16, a much smaller �-WOBP (essentially a BP) exists which
computes the same function, pointing out that our construction of a �-WOBP from a circuit is
not the most efficient construction possible. However, for more difficult problems, circuits can be
much more efficient than branching programs30. This means that a fixed size CSAT problem may
be more difficult than a BP-SAT problem of the same size.

One serious concern is that the problem of secondary structure interfering with the progress
of the computation is made worse. First, “inopportune” hybridization now involves much longer
subsequences, resulting in many thermocycles in which no progress is made. Secondly, newly
activated frames are located in the “head history” region of the DNA, which is likely to be involved
in secondary structure. Experimental investigation is required to see how serious the problems will
be.

2.3.4 Conclusions and Future Directions

Like other forms of DNA computation, it seems that whiplash PCR can’t by itself compete with
electronic circuits unless there are significant advances in the control of the biochemistry. How-
ever, the computational power of whiplash PCR – in theory – suggests that “one-pot” biochemical
reactions have more potential for computation than previously thought. Conceivably, whiplash
PCR could be combined with other kinds of DNA processing – either stepwise or within the “one
pot” biochemical reaction. For example, we can consider modifications of whiplash PCR wherein
DNA strands not only grow though polymerization, but also shrink due to other enzyme activity
(e.g. restriction endonucleases or topoisomerases). An open theoretical question is how to use
non-determinism during whiplash PCR: we have already discussed the case where the solution to
a problem is found by first using nondeterministic steps in the generation of the DNA, and then
using deterministic steps during the execution of the program, but whiplash PCR could equally
well be used to perform nondeterministic steps by having multiple frames matching the current
head state.

30As a simple example, an arbitrary symmetric function can be implemented in a circuit of size O(n), but the best

construction for branching programs requires O(
n
2

log n
) nodes.



26

(a)

x3

x2

x3

-

-

-

-

-

-

-

-+

out+ out-

+

-g7

+

+

g4
+g8

+g8
-g8

-

-+

g7

g8
-g9

+g9

-g9

+g10

-g10
-g10

-

-+

+

+

+

g9

g5
+g11

+g11

-g11

+

g10

g6
+g12

+g12

-g12
g11

g12

+ -

+ -

+g1 -g1

-g2+g2

x1

+ -

+g3

+g4

-g3

-g4

+g5

+g6

-g5

-g6

x2

x3

g1

g3

+

+ +g7

+g7

g2

(b)

-

-

--

-

+ -

+ -

+g1 -g1

-g2+g2

+g3

+g4

-g3

-g4

x2

x3

x1

+

+

+ +

+

out+ out-

g2

g3

g1

g4

(c)

Figure 2.16: The translation of a 3 input, 6 gate XOR circuit into a �-WOBP. (a) the circuit, (b)
the �-WOBP generated by our construction, (c) a much simpler �-WOBP generated by hand.
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Chapter 3 Models of Computation by Self-Assembly

3.1 2D Self-Assembly for Computation

Abstract1 This section informally explores the power of annealing and lig-
ation for DNA computation. (The following two sections will explore these
notions more formally.) The first step of Adleman’s molecular solution to the
Hamiltonian Path Problem involves the creation of a combinatorial library of
DNA by means of directed self-assembly, followed by ligation. Experimen-
tally, DNA annealing can produce many unusual structures in addition to the
usual B-form double helix, so we wonder if they can be used to advantage
for computation. We conclude, in fact, that annealing and ligation alone are
theoretically capable of universal computation.

When Adleman introduced the paradigm of using DNA to solve combinatorial problems Adle-
man (1994), his computational scheme involved two distinct stages. To solve the directed Hamilto-
nian path problem, he first mixed together in a test tube a carefully designed set of DNA oligonu-
cleotide “building blocks”, which anneal to each other and are ligated to create long strands of
DNA representing paths through the given graph. After this ligation stage, there ensue n steps
of affinity purification, whereby exactly the strands representing Hamiltonian paths are separated
into a test tube (“the answer”).

Lipton (1995) subsequently refined the formalism for DNA-based computation. He did away
with Adleman’s first stage, ligation, and replaced it by starting all computations with a fixed set
of DNA strands representing all n-bit strings. Lipton expanded on Adleman’s second stage, sep-
aration, where he showed how all solutions to a given boolean formula f can be separated into a
test tube (“the answer”). The cost for the generality of this method, even when using the improve-
ments of Boneh et al. (1996a), is indicated by considering solving the Hamiltonian path problem:
a straightforward method2 takes about n3 separation steps using Lipton’s approach, compared to
the n steps used by Adleman.

We can conclude from this circumstantial evidence that much of the physical computational
power Adleman was exploiting was in his first stage, where annealing and ligation were used.
Lipton has explored the power of generalizing Adleman’s second stage; we would like now to

1Results in this section also appear in Winfree (1996b). Thanks to Paul W. K. Rothemund for the discussions at
the Red Door Cafe that lead to this work, and to Nadrian C. Seeman for suggesting the use of the double-crossover
molecule.

2Let the graph have n vertices and e edges; e � n2. The best boolean circuit I could devise uses O(en log n)

gates to verify a Hamiltonian path. Another issue is that Adleman’s ligation stage requires the synthesis of about
O(n+ e) oligonucleotides, which is O(n2) if e = O(n2); whereas Lipton needs only about 4n log n oligonucleotides
to create his standard initial test tube of DNA. However, technology is becoming readily available for synthesizing
many oligonucleotides in parallel very quickly (see e.g.Chetverin and Kramer (1994)); the same cannot be said for the
affinity purification steps, which will likely remain expensive. Comparing volume for a graph with n=2 edges out of
each vertex, Adleman’s method uses volume roughly proportional to (

n

2
)
n, while Lipton’s method uses a volume of

2
n log n, since it takes n log n input variable bits to specify a potential path.
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explore the power of generalizing Adleman’s first stage.
An immediate stumbling block is that the chemistry of annealing is not fully understood. At

best we can try to define some conditions under which the reactions are predictable, or at least
under which it is reasonable to expect that the reactions could be made to be predictable.

3.1.1 Some Basic Annealing Reactions

The fundamental chemistry of DNA is based on the double helix and the principle of complemen-
tarity. Each strand of DNA is a covalently linked polymer, where each unit consists of a constant
part (the sugar-phosphate “backbone”) and one of either adenine, thymine, cytosine, or guanine
(the bases A, T, C, G). Each strand is oriented; it has a 3’ and a 5’ end. When DNA forms a
double-stranded helix, the strands must be anti-parallel, and complementary bases align (A with
T, C with G); such strands are called Watson-Crick complementary sequences. DNA also takes on
more complicated configurations, including triple helix, quad helix, super-coiled, and branched.

A surprising number of possibilities are available, some of which one may want, and many
of which one may not want. DNA is a particularly easy molecule to work with, because it has
evolved to be stable, typically unreactive, yet manipulable. RNA and protein, which have evolved
to serve many enzymatic functions, are far more reactive, and thus it is less easy to predict how
novel designs will behave in an experiment.

I will now comment on some reactions we may wish to exploit, presented in cartoon fashion
(Figure 3.1). I will have to be more detailed with the reactions involved in the main thrust of this
paper, where their computation-universality is demonstrated.

(A) This is the canonical annealing reaction for DNA. Two strands with complementary sub-
sequences will form hydrogen bonds and hybridize at the matching base pairs. The rate
constants for this reaction, which is reversible, depend on the temperature and salt concen-
trations, among other things. The melting temperature, above which the complex is not
stable, depends upon the number of matching base pairs.

(B) A special case of the above, where the matched region occurs at the ends. Note that the two
“sticky ends” (unmatched sequences) are available for further reactions with more DNA.

(C) The above reaction can be used to join two double-stranded DNA molecules with comple-
mentary sticky ends. If ligase is present in the solution, the nicks in the backbone of the
product will be repaired by the formation of a covalent bond, resulting in two continuous
strands.

(D) If mismatches occur flanked by matching regions, the unmatched DNA can bubble out.

(E) As above, except that the mismatch occurs here on both sides. Whether this structure is
stable depends critically on the temperature and concentration of salts. For example, a rule
of thumb is that the difference in melting temperature between a perfectly matched structure
and an imperfectly matched structure is 1 degree per 1% mismatch (Wetmur 1991).

(F) This is the simplest DNA branched junction. The assembly of these structures consists
of course of sequential steps; only the end product is shown. This 3-armed junction is
probably floppy. However, how floppy it is depends upon the exact sequence of base pairs
in the oligonucleotides.
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(G) This 4-armed junction is commonly known as a Holliday junction. The two horizontal
strands tend not to be parallel, but skew. If the sequences along both strands are homologous,
then a phenomenon called branch migration can occur, in which the crossover point drifts
right or left.

(H) This is the most complicated structure we will consider. We will put it to good use later. It
has been found to be fairly rigid and planar (Fu and Seeman 1993). Note the sticky ends.
Other related double-crossover junctions are possible, depending upon the number of half-
turns present in the helical regions. Seeman calls this molecule “DAE” for double-crossover,
antiparallel helical strands, even number of half-turns between crossovers. “DAO”, with an
odd number of half-turns between the crossovers, has an interesting topological difference:
It consists of only 4 strands.
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Figure 3.1: Some basic types of annealing reaction. Curves represent single strands of DNA
oligonucleotide. The half arrow-head represents the 3’ end of the strand. Small lines between
strands represent hydrogen bonds joining the strands. The helical structure of the DNA is not
represented visually. Letters signify sequence motifs. A bar above a letter signifies the Watson-
Crick complement of the motif.
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All of the structures above have been made in the lab and their structures verified (see, for
example, Fu and Seeman (1993)).

We would ultimately like a theory which could tell us, given a set of oligos, a temperature,
and salt concentrations, what stable structures will form, as well as the kinetics. But this is a very
complex task!

3.1.2 Operations Using Linear DNA

We will first briefly consider what computations can be performed using annealing and ligation
of strictly linear DNA molecules. Many of the possibilities have already been discussed by other
authors. For example, the techniques used by Adleman (1994) allow for the construction of all
DNA representing strings accepted by a finite-state automata (also known as a regular language),
using the annealing reactions (B) and (C) above. This is important, because it allows us to create
a well-defined, somewhat interesting set of inputs on which to compute in parallel. Beaver (1996)
has discussed how, in conjunction with polymerase, reactions (D) and (E) can be used to make
copies of DNA with context-sensitive insertion, deletion, and replacement of substrings. In light
of these powerful operations, it seems plausible that a “one-pot” linear DNA reaction could be
designed which performs universal computation.

3.1.3 Operations Using Branched DNA

There are many possibilities for computation using branched DNA. However, since the general
chemistry is not well understood, we will try to avoid ungrounded speculation by focusing on one
concrete possibility. The rest of this section3 will concentrate on how to assemble a large “weave”
of branched DNA which simulates the operation of a one-dimensional cellular automaton.

Background: Blocked Cellular Automata

This section develops a formal model of computation called blocked cellular automata (BCA)4.
We will later show how BCA can be simulated by DNA.

The operation of a BCA is diagrammed in Figure 3.2. As in the Turing Machine model,
information is stored in an infinite one-dimensional tape, where each cell contains one of a finite
set of symbols. The computation proceeds in steps, where in each step the entire tape is translated,
according to a given rule table, into a new tape. The translation occurs locally and in parallel;
pairs of two cells are read, and which two symbols are written is governed by look-up in a rule
table5. It is of critical importance that the reading frame (which cells are paired together) strictly
alternates from step to step.

The set of entries f(x; y) ! (u; v)g is called the rule table, or the program, of the BCA. By
appropriately designing the rule table, the BCA can be made to perform useful computation. In
fact, BCA are computationally universal. A BCA with k+3s symbols can simulate in linear time
the operation of a Turing Machine with k tape symbols and s head states – the proof is analogous to
that in Lindgren and Nordahl (1990). Thus we can conclude that a BCA can be used to answer any

3The inspiration for this approach comes from the proof of the undecidability of the Tiling Problem (see Grünbaum
and Shephard (1986), Chapter 11).

4BCA (Wolfram 1994) are also known as partitioning CA (Margolus 1984) and as 2-body CA or particle machines.
They generalize the lattice gas model (Hardy et al. 1976), and are commonly studied in two dimensions.

5If the table contains multiple entries for a given pair of read symbols, then the BCA is said to be nondeterministic.
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Figure 3.2: Operation of a BCA. The tape of a BCA, divided into cells, is shown at the bottom
right. Each cell contains one of three symbols: blank, black dot, or white dot. The tapes at
successive time steps are stacked vertically above the initial tape. The inset, left, details the form
of a rule table entry, which governs how new tapes are created.

question which can be phrased in terms of a computer program. Small BCA have been designed
which sort lists of integers, compute primes, and many other tasks.

A few more comments are in order concerning the abstract model of blocked cellular automata.
First we consider the finite-size case. In any attempted implementation of a BCA, we cannot
actually construct an infinite tape. Thus boundary conditions become important. We consider the
following cases:

(a) No update of boundaries. We start with a finite tape of length 2n; at each step the tape
become 2 cells shorter; and after n steps the computation can proceed no further. This case
is not universal.

(b) Inactive boundary conditions. Whenever there is an unpaired cell at either end of the tape,
it is copied verbatim onto the new tape. The tape remains always the same size (n cells),
and thus there are only kn possible tapes. As the computation must begin to cycle after kn

steps, this case is also not universal.

(c) Periodic initial conditions. On either side of the input cells we specify a repeating pattern
of symbols. Starting with just one copy of the periodic block on either side of the input,
computation proceeds as in (a), but if the tape gets too short, we add another copy of the
periodic block to either side of the input tape and start the computation anew6. This case is
universal.

(d) Self-regulated boundary conditions. Depending upon what symbol is in the boundary cell,
the new tape will either shrink (as in (a)) or expand by appending a new cell to the end of
the tape. This case is also universal.

Finally, a word on how an answer is obtained from the BCA. This is a matter of convention.
Typically, when the computation is done, the answer is written on the final tape. But how is it
known when the computation is done? One possibility is that the tape stops changing; the system
has reached a fixed-point. However in this paper we will consider that a computation is done when
a special symbol, called the halting symbol, has been written for the first time anywhere on the
tape.

6By memorizing boundary cells, we can avoid re-computing any cells and make the computation more efficient.
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Simulation of BCA by DNA

We will now show how to use DNA to construct a BCA. In this section we will optimistically
show what chemical reactions we hopewill occur; in the following section we consider potential
difficulties in finding conditions such that they will in fact occur as we have described.

The DNA representation of the BCA tape is a little counter-intuitive, so we will explain by
example. Figure 3.3 shows part of the DNA molecule encoding the initial tape (the input to the
computation). To each tape symbol corresponds a short oligonucleotide sequence, which appears
in the initial molecule as a sticky end overhang in the appropriate positions. The rest of the DNA in
each segment does not vary with content, and is chosen to maximize structural stability. Note that
the reading frame is implicit in the structural form of the DNA. Although Figure 3.3 is schematic,
the 2D picture is meant to imply that the whole DNA complex is roughly planar. This is critical,
and luckily, it is physically plausible.

C

DNA:

A A C

B C A

BCA:

A A C

B A

Figure 3.3: Encoding the initial tape in a DNA molecule. The sequence of sticky ends in the initial
molecule encodes the initial tape of the BCA. Thus ‘A’ denotes a symbol in the BCA diagram,
whereas in the DNA diagram it denotes the unique sequence of bases associated with that symbol.

There are a variety of ways to make the initial molecule. Note that the initial molecule can
be thought of as consisting of several double crossover junctions (from Figure 3.1H, with the
modification that the top and bottom strands are made to be an odd number of half-turns in length
– see Figure 3.6 for detail) linked together by pieces of linear helical DNA. The sticky ends can
be designed such that only this unique molecule will self-assemble7. Ligase can be added to make
the segments of the initial molecule covalently bonded.

We will now explain how the program, that is the rule table, of the BCA is represented in DNA.
For each rule, e.g. (x; y) ! (u; v), we create a double crossover molecule whose sticky ends on
one helix are x and y, and on the other helix u and v8 (see Figure 3.6). All such rule molecules are
added to the solution containing the initial molecule. As shown in Figure 3.4, what is required for
computation is that rule molecules will anneal into position if and only if both sticky ends match.

Eventually, a triangular lattice of linked DNA will form, simulating a triangular region of a
BCA corresponding to boundary conditions (a) or (c) in Section 3.1.3 above (see Figure 3.5).
Boundary conditions (b) and (d) can be simulated by using special rule molecules for the edge of
the lattice; the details are not presented here. Note that each level of the lattice has a single strand

7It is easy to see that sticky end sequences can be chosen, using the same techniques as Adleman (see Section 3.1.2),
such that a periodic initial molecule will form, creating periodic initial conditions as mentioned in Section 3.1.3 (c)
above. Similarly, a regular language of inputs could be made in parallel.

8The lengths of all parts of the rule molecules are chosen to be constant for simplicity, but it is conceivable that by
using variable length as well as sequence to encode symbols, greater specificity could be achieved.
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Figure 3.4: Rule table molecules assemble into the lattice. We see free-floating rule table
molecules above and the initial molecule at the bottom (both correspond to the BCA in Figure 3.2).
A rule table molecule, with sticky ends B and C, is about to anneal to the initial molecule. At the
left, a rule molecule which matches only at A will ultimately not stick. Note that the rule molecule
with sticky ends A and A will also not stick, because the orientation of its strands is wrong; this
rule molecule will be useful on alternate levels of the lattice.

of DNA which travels the entire length of the lattice at that level, and where the coded symbols
occur in the sequence in in which they occur in the BCA at time t.

Level 3

Level 0

Level 1

Level  2

Level  t

Figure 3.5: The DNA lattice resulting from a finite initial molecule. At the chosen annealing tem-
perature, which is above the melting temperature for s base-pair annealing but below the melting
temperature for 2s base-pair annealing, no more rule molecules can stably attach to this structure.
However, if the bottom level (the initial molecule) were extended, then a larger triangle could
form. s is the length of the sticky ends in the rule molecules.

Finally we ask, how can we access the output of the computation? This breaks down into two
questions: How do we know whenthe computation is done? And whatis on the tape at that point?
There are many possible approaches to take; here we will merely sketch one. As mentioned above,
we will consider the computation to be done when a special halting symbol is written on the tape9.
In DNA, this corresponds to the special sticky end motif being incorporated into the lattice. When
this occurs, the motif will be present as a double-stranded molecule for the first time, and this site

9At this point other parts of the tape will typically “not know” that the computation is done, so the lattice will
continue to grow. However, it is also possible to design the cellular automaton such that all cells go into a special state
to halt computation at the same time (the Firing Squad Problem, see e.g.Yunes (1994)), thereby allowing us to design
linear pieces of DNA which fit into the gaps at the final level of the lattice, so that it cannot grow further. This may
make extraction of the final tape configuration easier.
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can be be chosen as the recognition domain for a binding protein10, which could, for example,
subsequently catalyze a phosphorescent reaction, turning the solution blue. To determine what is
“on the tape” at this point, it is necessary to extract the single strand of DNA corresponding to the
final level of the BCA. To do this, first add ligase to covalently bond all the annealed segments11.
Then add resolvase to break all the crossover junctions12. Finally, heat to separate the strands, and
use affinity purification to extract the strand containing the halting motif. Amplify and sequence
that strand however you desire (e.g.via PCR and standard sequencing gels).

To summarize the model suggested here, a computation would proceed as follows.

1. First, express your problem via computer program. Convert that program into a (possibly
nondeterministic) blocked cellular automaton.

2. Create small molecules (H-shaped and linear) which self-assemble to create the initial
molecule (or initial molecules, if search over a FSA-generated set of strings is desired).
Add ligase to strengthen the molecule.

3. Create small H-shaped molecules encoding the rule table for your program.

4. Mix the molecules created in steps 2 and 3 together in a test tube, and keep under precise
conditions (temperature, salt concentrations) as the DNA lattice crystallizes.

5. When the solution turns blue, ligate, cut the crossovers, and extract the strand with the
halting symbol.

6. Sequence the answer.

Analysis and Estimates. Will it work?

Let’s begin the analysis optimistically. The above construction is just one implementation possible
in a general class that might be called “crystal computation”13. In this class, we design a system
where we can tailor-make the energy (and hence free energy) as a function of the configuration.
We design it such that the lowest energy state (or in our case, the lowest free-energy state at a
given temperature) uniquely represents the answer to our computation. This is closely related
to the approach taken by Hopfield (1982) in his seminal work on neural networks. In our case
the lowest energy configuration is one where every rule molecule has all four sticky ends bound.
Given the presence of the initial molecule, this can only occur if the computation proceeds as
desired.

The above analysis is a simplification that fails to take into consideration many aspects of the
proposed implementation. For example, it completely ignores the dynamics involved; one simply
anneals at a slow enough schedule, the argument goes, and the crystal is the result. Whereas in

10The protein must have an active bound form, and inactive unbound form. Furthermore, we must be sure it doesn’t
bind to rule molecules in the solution.

11It is a valid concern that ligase may not be able to bind to any but the outermost strands in a lattice. It may be better
to reverse the order of the ligase and resolvase steps.

12Although a resolvase has been shown to cut crossovers in double-crossover molecules (Fu et al. 1994), it is un-
known whether the enzyme will be functional on the inner strands in the lattice. However, the enzyme may be able to,
at diminished speed, work from the edges in.

13It has been suggested that we shouldn’t use the term “crystal”, because it has a well-defined special meaning. At
best, our constructions yield “pseudo-crystals”, because any useful computation is aperiodic. We beg the reader to give
us slack in using this term.



35

fact the crystallization proceeds at the edges only, according to kinetics that significantly influence
the result.

Can a temperature be found such that two sticky ends bound is stable, while one sticky end
bound is unstable? In other words, let T0, T1, and T2 be the melting temperatures for a rule
molecule fitting into a lattice slot where respectively 0, 1, and 2 of the sticky end pairings match.
We want to keep the test tube at a temperature T such that T0 < T1 < T < T2. This should
be possible, but how large is the difference between T1 and T2? Although this is unknown for
the particular molecules we use, we can get some idea by looking at what’s known about linear
DNA annealing. For example, under standard conditions 20 base-pair oligonucleotides (repre-
senting rule molecules with two length 10 sticky ends bound) melt at 70� C, while 14 base-pair
oligonucleotides (representing rule molecules with only one length 10 sticky end bound, and the
other matching partially) melt at 58� C (Wetmur 1991). T = 65� C would then discriminate
the two cases. However, the analogy of rule molecules with two separate binding domains to
variable-length oligonucleotides with continuous binding domains is questionable.

A definitive answer to “But will it work?” requires a chemist’s knowledge and actual experi-
ments. But we can immediately bring some more concerns to light. Since I do not have answers
to them, I will merely mention them in passing. First, to read out an answer of more than one bit,
our implementation requires ligating the rule molecules and cutting them with resolvase. It is not
at all clear that, in the crowded confines of the DNA lattice, either ligase or resolvase will have
room enough to perform its job14. Second, it is possible that, at a low rate, incorrect rules will be
incorporated into the lattice. If this occurs, the computation is ruined. It is thus not clear at this
time what yields of correct computation are to be expected, and whether a means could be devised
to separate the good from the bad. It is additionally conceivable that stable structures form in the
solution unconnected to the initial molecule. For example, four rules molecules could connect
in a stable “diamond”; we might think that these complexes will only rarely be formed, because
the intermediate steps are unstable (only one sticky end joins molecules), and for similar reasons
they would grow slowly. However, they and other types of spurious connections and tangles could
form, ruining the computation. A final concern is that there may be some systematic molecular
stress or strain that comes into play when building a large crystal, and that beyond a certain size
tearing would result. All these issues, and surely others, deserve more attention and study.

If for the moment we suppose that the implementation operates correctly, let us consider what
advantage would be derived. Take the following with a bucket of salt: First, a small rule molecule
(see Figure 3.6 for a close-up) consists of 50 base-pairs of DNA, sufficient for sticky ends of length
5, which gives us � 10 symbols15. That’s 33 K Dalton / rule molecule, with a size probably less
than 20 x 44 x 85 Angstroms, for 3 bits / rule molecule.

Assessing speed is even more speculative. Suppose we perform a computation of a 10000-cell
BCA with inactive boundary conditions, and compute for 10000 time steps. Suppose it takes 1
second for a rule to fit in when its slot is exposed. Since the 5000 slots are simultaneously exposed,
all should be filled in approximately 1 second on average. This leads to a rough estimate of 3 hours
for computing the 100002 cell lattice. Using 1kg of DNA, we could assemble 1019 rule molecules,

14If there is an angle between the plane of the lattice and a rule molecule which has just fit in place, then in our
construction, an opposite angle is formed when a rule molecule fits into the subsequent layer. Consequently, the 2D
lattice, rather than being perfectly planar, folds back and forth like a paper fan, which we call a “corrugated” lattice.
The corrugated lattice exposes more of the double helix strands in each rule molecule, possibly making the strands
more accessible to ligase but making the crossovers less accessible to resolvase.

15We optimistically require only 2 mismatches between sequences representing differing symbols. We also require
the complement of a symbol’s sequence does not code for a symbol, and that every code sequence has 3 C-G bonds and
2 A-T bonds, for more consistent melting temperatures.
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Figure 3.6: Detail of a small rule molecule. This is the smallest DAE/even style rule molecule
possible. It has sticky ends of length 5, and internal region of length 10. Every base pair is shown.

that is, 1011 such calculations in parallel. That leads to a total of 1015 operations per second16.
There is no lab work to be done during this the major stage in the computation. Of course time
would also be required in the input and output stages.

Open Questions, Extensions, and Other Speculation.

In addition to the essential question of whether the ideas above can be made to work in the lab,
there are many other issues to be investigated.

How energy-efficient is crystal computation? It is interesting to note that what might be
called the computation proper (crystallizing the DNA lattice) theoretically requires arbitrarily little
energy, as will be argued in the following sections. Of course, a great deal of energy may be used to
heat the mixture up, to pulse the temperature to dissolve defects, or to apply other error-correcting
mechanisms. Furthermore, the input and output stages require synthesis and analysis of DNA
molecules, and thus also much energy. Our proposal is possibly the most nearly implementable
example of the principle that computation is free, but input and output are costly (Bennett 1973).

Why use the DAE structure for rule molecules? Clearly the particular choice of molecule
is not of intrinsic importance to the idea of this construction. The logical essence is to have an
“H”-shaped molecule with four designable sticky ends. At its simplest, one could imagine making
the “H” out of two chemically cross-linked strands of DNA (Figure 3.7a). Another alternative is
the slightly larger single crossover Holliday junction. However, it is important for the construction
of the lattice that the two linear pieces in the “H” be planar; Holliday junctions have been shown
to prefer a (flexible) 60� skew angle (Eis and Millar 1993). The chemically linked strands imag-
ined above have not yet been characterized. The reason we propose the large double crossover
molecules17 is that they have already been characterized in the lab and are thought to be rigid

16This compares to 300 GFLOPS (� 10
14 basic operations per second) attainable by the best modern supercomput-

ers, e.g.a 7000 processor Intel Paragon. Of course, the “operations” we compare are apples and oranges.
17Ned Seeman suggested we consider double crossover molecules as an improvement over the more awkward

branched junction constructions we were originally considering.



37

(a)
x

f(x,y) g(x,y)

y

f(x,y) g(x,y)

x y

(b)

x y

f(x,y) g(x,y) f(x,y) g(x,y)

x y

(c)

x y

f(x,y) g(x,y)

(d)

x y

f(x,y) g(x,y)

(e)

x y

g(x,y)f(x,y)

x y

g(x,y)f(x,y)

Figure 3.7: Alternative Topologies for 2D Lattice. (a) Rule molecules based on cross-linked
DNA. (b) DAE rule molecules with an odd number of half-turns between junctions on adjacent
molecules. (c) DAE rule molecules with even-length spacing. (d) DAO rule molecules with odd-
length spacing. (e) DAO rule molecules with even-length spacing.
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(which may help prevent tangled lattices) and planar (Fu and Seeman 1993). We chose DAE in
preference to other topological variants of double crossover molecules, such as DAO, because the
topology of the rule molecule leads to a different “weave” of DNA strands in the lattice (Fig-
ure 3.7bcde). We prefer to have a single strand which, if covalently linked, runs along an entire
level of the lattice, thus encoding the BCA state for that time step.

Why a 1D BCA? Why not build a 3D lattice to simulate a 2D BCA? We started with 1D
BCA because they can be immediately explored used existing DNA technology. Two dimensions
offers several advantages, however, such easier design of efficient computations. Perhaps more
importantly, in higher dimensions it becomes easier to design error-tolerant rules (Gacs and Reif
1988); intuitively, point defects in 2D can be filled-in from adjacent correctly-computed cells,
while in 1D a point defect severs communication between the left and right side. Open question:
Can the DNA rule molecules be modified so as to build 3D DNA lattices?Speculatively, one
could propose a variant of the double crossover Holliday junction, the “multiple strand double
crossover junction” (Figure 3.8), as a means to implement the read-4, write-4 operation required
by 2D blocked cellular automata (see e.g Toffoli and Margolus (1987), Ch. 12). Unfortunately,
the proposed building-block molecule has not yet been synthesized.

A
B

C

D

f3(A,B,C,D)

f4(A,B,C,D)

f2(A,B,C,D)

f1(A,B,C,D)

Figure 3.8: A possible 3D lattice of DNA for simulating 2D BCA. Four DNA double helices may
be bound together by crossover junctions (left). Sticky ends determine 2D BCA rules as the rule
molecules assemble in an alternative cubic lattice (right).

Potential uses in nanotechnology. Here we have suggested an approach to molecular compu-
tation via programmable self-assembly. Programmable self-assembly may have other applications.
Open question: Can cellular automata generated lattices be used to define ultra-high resolution
electronic circuits?One possibility, along the lines investigated by Robinson and Seeman (1987),
would be to conjugate nano-wire onto individual rule molecules, such that when the rule molecules
fit together, an electrical circuit is formed. This proposal differs from Robinson and Seeman’s sug-
gestion in that whereas they envisioned a periodic lattice of identical memory cells, we suggest
that cellular automata rules could be used to build more complicated circuits, either in 2D or 3D.

Why use DNA at all? The principle of computing via crystallization is not restricted to DNA.
Open question18: Can non-DNA-based molecules could be used to design desired computations
carried out on the surface of a growing crystal?

18Suggested by Stuart Kauffman, private communication.
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3.1.4 Comparison with Other Approaches

Perhaps the most practical suggestion for universal computation via DNA is that of Boneh et al.
(1996a). Their approach makes straightforward use of well understood laboratory techniques for
manipulating DNA. They are able to simulate nondeterministic boolean circuits, which seems very
efficient for some calculations, and which gives them universal computational ability. Because
circuits allow non-local interactions of variable, circuits can be very compact. However, it should
be pointed out that the computation requires a lab technician to sequence operations on multiple
test tubes; the logic of the program being computed is external to the DNA, which is used as a
memory. Small scale computations could be immediately attempted with reasonable chance for
success; however due to the weakness of single-stranded DNA and other factors, it is not clear
how this approach will scale.

Other authors have proposed DNA implementations of Turing Machines directly (e.g.Beaver
(1996), Smith (1996), Rothemund (1996)). The approaches vary from using PCR to relying on
restriction enzymes. These approaches show promise, although the reliability and efficiency of the
steps is unclear. Furthermore, single-tape, single-head Turing Machines are particularly cumber-
some logically; circuits will typically compute the same function in many fewer steps (and single
steps take comparable time in both systems – on the order of hours!). In short, although they are
of theoretical interest, it is unlikely that anyone will actually go into the lab and solve problems
this way.

Our hypothetical cellular automaton implementation differs in a number of ways: First and
foremost, our proposal is a “one-pot” reaction. Dump in the rule molecules encoding your prob-
lem, and all the logic of the computation is carried out autonomously. No lab work is involved.
Furthermore, in addition to running a massive number of computations in parallel, each cellular
automaton performs its own computation in parallel – thus fully exploiting the parallelism avail-
able. The major and significant drawback of our proposal is that it makes use of chemistry which
is not yet fully understood, and thus going into the lab to do a computation this way would be a
real technical challenge.

The main conclusion of this paper is that annealing and ligation alonemay be sufficient for uni-
versal “one-pot” DNA computation. Whether the particular scheme envisioned here can be made
to work in the lab is a matter for further research. In any case, it is clear that better experimental
characterization of the chemistry of annealing is required, and may open up new possibilities for
DNA based computation.

3.2 Graph-Theoretic Models of DNA Self-Assembly

Abstract19 In this paper we examine the computational capabilities inherent
in the hybridization of DNA molecules. First we consider theoretical mod-
els, and show that the self-assembly of oligonucleotides into linear duplex
DNA can only generate sets of sequences equivalent to regular languages. If
branched DNA is used for self-assembly of dendrimer structures, only sets of
sequences equivalent to context-free languages can be achieved. In contrast,
the self-assembly of double crossover molecules into two dimensional sheets

19Results in this section also appear in Winfree et al. (in press). Thanks to Dan Abrahams-Gessel for suggesting the
context-free grammar result.
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or three dimensional solids is theoretically capable of universal computation.
The proof relies on a very direct simulation of a universal class of cellular
automata.

A fundamental property of DNA is that, under the right conditions, Watson-Crick complemen-
tary regions of single-stranded DNA will hybridize and form a double helical structure. This prop-
erty, in vitro and in vivo, can lead DNA to assume a remarkable diversity of geometric forms20.
Under certain simplifying conditions, the behavior of hybridization is sufficiently predictable to
be considered as a computational primitive; i.e., a function from initial oligonucleotides to final
supramolecular structures is computed. The computational aspects of self-assembly were ex-
ploited for the first time in Adleman (1994), where linear self-assembly was used as a step in
solving the Hamiltonian Path Problem. When the self-assembly of tree-like structures takes place,
due to the presence of branched junctions, a slightly more powerful computation results. We re-
view a two dimensional generalization capable of universal computation, as suggested in Winfree
(1996b), and also suggest a concrete three dimensional self-assembly process.

In order to understand the computational implications of DNA hybridization, we will first
consider a highly abstracted mathematical model. The physical system we would like to model
can be described as follows:

Synthesize several sequences of DNA. Mix the DNA together in solution. Heat
it up and slowly cool it down, allowing complexes of DNA to form. Chemically or
enzymatically ligate adjacent strands. Denature the DNA again, and ask, what single-
stranded DNA sequences are now present in the solution?

A proper answer to this question is beyond our capability, and realistically detailed models
might not be enlightening regarding the logical essence of self-assembly. We therefore investigate
very simple models, which, nonetheless, are sufficiently realistic that translation into real world
scenarios should be direct. We will consider a number of properties which DNA self-assembly
may be postulated to obey, and we will analyze the computational capability and the limits of any
self-assembly process which obeys those properties.

Informally, the properties we consider are:

1. Constant Temperature. The number of base-pairs required for the stability of DNA com-
plexes does not change during the course of the self-assembly. We thus don’t consider
annealing, where at high temperatures only long regions will hybridize but later at lower
temperatures even short regions can hybridize, but rather we model a “constant tempera-
ture” process.

2. Perfect Watson-Crick Complementarity. Hybridization only occurs between sequences
with perfect Watson-Crick complementarity. Hybridization of mismatching sequences, or
that which creates bubbles, branched junctions, triple helices, and other unusual structures,
is not considered.

3. Permanent Binary Events. All self-assembly interactions occur between two complexes
at a time, and no more. These interactions are exclusively hybridizations, joining two com-
plexes together. Furthermore, in the model once two complexes join, they never dissociate.

20In vivo, not only is there single-stranded and double-stranded DNA, but branched junctions are formed during
recombination, and trypanosomes maintain complex networks of circular DNA within which RNA editing occurs.
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4. No Intramolecular Events. A DNA complex which has self-assembled will not interact
with itself, for example by cyclizing. Note, however, that some physically intramolecular
interactions can be modeled as a part of a binary event, as discussed below.

5. Single vs Multiple Binding Regions per Event. We will consider two cases: either (a)
each binary hybridization event creates a single contiguous Watson-Crick region, else (b) the
binary events may result in the formation of several physically separated hybridized regions
between the two complexes. The latter case is meant to model physical situations where an
intermolecular hybridization is immediately followed by an intramolecular hybridization.
The case we are interested in is discussed in Section 3.2.5 (see Figure 3.15).

6. Specified Classes of Initial Complexes. Because of our constant-temperature assumption,
it becomes useful to assume that some complexes have already formed prior to the stage of
self-assembly which we will consider. Later in the paper, we will consider initial complexes
which consist of (a) oligonucleotides, (b) duplex DNA with sticky ends, (c) hairpins with
sticky ends, (d) three-armed junctions with sticky ends, (e) double crossover molecules with
hairpins and sticky ends, and (f) arbitrary complexes.

Properties (1), (2) and (3) are used primarily for logical simplicity. If Property (4) were
changed to allow intramolecular events, it is possible that some of our results would be slightly
modified. We will analyze how our results change under different choices for Properties (5) and
(6). In Section 3.2.5, we impose an additional property in order to incorporate geometrical con-
siderations for lattice self-assembly.

3.2.1 Language Theory and Grammars

Before we present our model of DNA self-assembly, we should comment on what it means to
compute by self-assembly. As mentioned above, the typical case is that one starts with a small
variety of synthesized oligonucleotides, and one ends with great variety of self-assembled strands.
The resulting strands are not random; they have certain properties that derive from being formed
from the original oligonucleotides according to certain rules of hybridization.

An analogous situation arises in formal language theory, which has been well understood for
many years. There, rather than test tubes of strands, one is interested in sets of symbolic strings,
and in methods of generating them. We will sketch the basics here; for a full development see
Ginsburg (1966).

An alphabetis a finite set of symbols, for example fA;C;G; Tg or f0; 1g or fx; y; z; (; );+; �g.
A string over an alphabet is a finite sequence of symbols from the given alphabet, for example
TATAA or 101011 or (x + y) � z. A languageis a well-defined, possibly infinite set of strings,
for example f all strings overfC; Tg of length70g or f all prime numbers, written in binaryg or
f all well-formed formulas overfx; y; z; (; );+;�gg.

Although one cannot write down each and every string in an infinite language, one can ask
the membership question: is string x in language L? Note that if the language L contains all
bit strings x for which function f(x) = 1, the the membership question is equivalent to boolean
function evaluation. The membership question may be harder or easier to answer, depending on x
and L. Formal language theory goes to great pains to classify languages according to how fancy
the computer must be to answer the membership problem. We sketch the fundamental result due
to Noam Chomsky, known as the language hierarchy. This requires formalizing the specification
of languages by generative rules.



42

A rewriting rule x ! y, where x and y are strings, specifies that a string s = axb can
be rewritten to produce the new string s0 = ayb. A grammarG is a collection of rewriting
rules together with a division of the alphabet into two groups: terminal symbolsand nonterminal
symbols, where only nonterminals appear on the left hand side of rewriting rules. Each grammar
uniquely defines a language LG as follows: the string of terminals s is in LG iff it can be obtained
from the special nonterminal S by the repeated application of rewriting rules in some order (called
a derivation).

Grammars may be classified by what kinds of rules they use. We give examples of the three
main classes below:

Regular grammars use rules of the form A ! pB and A ! p where A and B are nonterminal
symbols and p is a string of terminals. Languages generated by regular grammars are called
regular languages. For example, consider the regular grammar GE = fS ! 0S; S !
1T; S ! 0; T ! 0T; T ! 1S; T ! 1g where 0 and 1 are terminals. This grammar
gives rise to all bit strings with an even number of 1’s. 101011 2 LGE

because S !
1T ! 10T ! 101S ! 1010S ! 10101T ! 101011. Note that during the derivation
we always have a single nonterminal at the right, where all the action takes place. Despite
their apparent simplicity, regular languages have found extensive use in pure and applied
computer science, perhaps because their membership question can always be answered by
an exceedingly simple abstract computer known as a finite state machine.

Context-free grammars use rules of the form A ! P where again A is a nonterminal symbol,
but now P is an arbitrary string of terminals and nonterminals. Languages generated by
context-free grammars are called context-free languages. Consider the grammar GF =

fS ! S + S; S ! M;M ! M � M;M ! (S);M ! x;M ! y;M ! zg where
the terminals are fx; y; z; (; );+; �g. This grammar gives rise to well-formed formulas.
(x + y) � z 2 LGF

because S ! M ! M �M ! M � z ! (S) � z ! (S + S) � z !
(S+M)�z ! (S+y)�z ! (M+y)�z ! (x+y)�z. Note that whereas it is impossible
to generate regular languages whose strings all have long-range structure, one can generate
long-range “nested” structure in a context-free language – for example, every parenthesis
must be matched in the formulas above. Context-free languages include regular languages.
The membership question for context-free languages can be answered by a slightly more
complex machine known as a nondeterministic pushdown automaton.

Unrestricted grammars use rules of the form A ! P where now A may be an arbitrary strings
of nonterminals, and P is an arbitrary string of terminals and nonterminals. Languages gen-
erated by unrestricted grammars are called recursively enumerablelanguages because they
include every language which can be generated (enumerated) by any computational pro-
cess (recursion). Recursively enumerable languages include context-free languages, regular
languages, and much more. They are as fancy as you can get. A very simple example:
consider the alphabet fS;L;R; B ;!B ; W ;!W ; 0; 1g and the grammar GP = fS ! 1; S !
LR;L ! L

!

B ; L ! 1; R !  

BR;R ! 1;
!

B

 

B !  

W

!

W ;
!

B

 

B ! 0;
!

B

 

W !  

B

!

B ;
!

B

 

W !
1;
!

W

 

B !  

B

!

B ;
!

W

 

B ! 1;
!

W

 

W !  

W

!

W ;
!

W

 

W ! 0g where the terminals are 0 and 1.
This gives rise to the rows of Pascal’s triangle mod 2. The third row 101 2 LGP

because

S ! LR ! L
!

B R ! L
!

B

 

B R ! 1
!

B

 

B R ! 10R ! 101. Later, we will make use of a
subclass of unrestricted grammars equivalent to blocked cellular automata, which generalize
the example and which are still capable of generating all recursively enumerable languages;
that is, they are universal. A surprising consequence of universality is that the membership



43

question for recursively enumerable languages is sometimes impossible to answer!

3.2.2 DNA Complexes and Self-Assembly Rules

Grammars turn out to have a close relationship to the self-assembly models we discuss here.
However, to make this relationship precise, we define our model formally.

A DNA complex21 is a connected directed graph with vertices labeled from fA;C;G; Tg,
edges labeled from fbackbone; basepairg, with at most one incoming and one outgoing edge of
each type at each node (thus at most four incident edges total), and where for every base pair edge
x! y there is a reciprocal basepair edge y ! x. Furthermore, all base-pairing in a DNA complex
must be Watson-Crick, that is, every basepair edge must be within a subgraph isomorphic to one
of the 10 given in Figure 3.9a.
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Figure 3.9: Some DNA complexes. Solid lines represent backbone edges; each dotted line rep-
resents a pair of reciprocal basepair edges. (a) The 10 Watson-Crick subgraphs. (b) The valid
ligation site. (c) A strand, a duplex with sticky ends, a hairpin with a sticky end, a 3-armed
branched junction, and a DAO double crossover (DX) unit with sticky ends.

A DNA complex (just complexfor short) represents several DNA polynucleotides bound to-
gether by Watson-Crick hybridization. Note that this representation supports a rich variety of
DNA structures, but structures such as triple helices are missing; similarly, it is lacking notions
of geometry and topological linking. Also, we must be careful because it is possibly to specify
physically impossibly structures.

It will be useful to introduce a few examples of DNA complexes, shown in Figure 3.9c. A
strandconsists of a chain of backbone-connected nodes, with no basepair edges. Strands may be
either linear or circular. A duplexconsists of two strands with contiguous basepair edges between
them. A duplex may optionally have a sticky-endon either end. An n-armed (branched) junction
consists of n duplex arms arranged around a central point. A double crossover unit(DX unit)
consists of two adjacent duplexes with two points of strand exchange22. For formal reasons, the
empty graph � is a DNA complex.

We now define some operations on complexes. In our model, hybridization is indicated by
C1 +B C2 = C3, where +

B
denotes the formation of basepair edges B between nodes of C1 and

21Similar to the clusterin Beaver (1995).
22Real DX molecules (Fu and Seeman 1993) come in a number of geometric varieties (we use “DAO” here), each

of which put constraints on the symmetry and the number of nucleotides between crossover points. We ignore these
constraints in the theoretical section.
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nodes of C2. If the graph consisting of both C1 and C2 and the edges B is a DNA complex,
then C3 is that graph; else C3 = � (for example, if a new edge joins two T ’s). The hybridization
operation will be used to describe self-assembly, below.

To analyze the complexes present after self-assembly, we introduce two other operations based
on ligation and denaturing. C0 = ligate(C) is obtained by adding a backbone edge from node j
to node i in every occurrence of the subgraph shown in Figure 3.9b, so long as nodes i and j have
no other incident backbone edges.

To model the denaturing of a complex, we define fCig = denature(C) to be the set of
all strandsin C , i.e., each Ci is a backbone-connected component of C (with no basepair edges).
Note that if C contains topologically linked circular strands, then denaturewill “magically” unlink
them from each other23.

In analogy to formal language theory, we define a language of DNA complexesto be a well-
defined, possibly infinite set of DNA complexes. We can generate a language of complexes LR;A
by applying self-assembly rulesR to an initial language A, usually finite24. The rules R specify
which hybridizations C1+BC2 = C3 are allowed. Let L̂R;A be the transitive closure of A under all
allowed hybridizations. In other words, (a) A �L̂R;A, (b) if C1; C2 2 L̂R;A and C1 +B C2 = C3

is allowed, then C3 2 L̂R;A, and (c) no other complexes are in L̂R;A. Now let LR;A � L̂R;A
consist of those complexes for which no further hybridization is allowed; these are called terminal
complexes. Loosely, LR;A is meant to model the DNA structures which would form given an
infinite volume of DNA and infinite time, presuming that only the hybridizations allowed by R

are physically relevant, and ignoring transient structures.
We will be especially interested in the self-assembly rules25 RT

1 which allow C1 +B C2 =

C3 6= � iff (1) the subgraph of C3 induced by B contains exactly two T -mer (or longer) strands
and (2) at most two edges lead to or exit from this subgraph. Thus, RT1 allows only hybridization
of sufficiently long sticky-ends, as illustrated in Figure 3.10.

B

Figure 3.10: A hybridization C1 +B C2 = C3 allowed by R3
1. The edges of B are emphasized in

C3, and the subgraph induced by B has a dotted box around it.

Both ligate and denature can be generalized to set operations by applying the operation to
each complex in the original set, and taking the union of all complexes that result. Since single-
stranded DNA can be identified with its sequence, written 5’ ! 3’, we can consider denature

23Circular strands are not necessary in our constructions, but they must be considered in Theorem 2(2).
24Logicians may think of A as “axioms” while R may be thought of as “inference rules”.
25The subscript “1” is used because these rules give rise to essentially one-dimensional complexes.
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to be a function from sets of complexes to sets of strings over fA;C;G; T; �g, where � is used to
indicate a circular DNA strand.

Finally, we note that to represent strings in alphabets � other than fA;C;G; Tg, we may
use a prefix-free codebookC which assigns to each symbol � in � a string C� over fA;C;G; Tg
such that no string is a prefix of another string. A DNA sequence s = s1s2 : : : sn can then
be translated into a string C(s) over � by scanning through s from left to right: if si begins a
subsequence of s which exactly matches some C� , then si is replaced by �, else si is erased; then
si+1 is processed, and so forth. For example, if � = f0; 1g, C0 = CAG, and C1 = CTC , then
C(AAACTCTCAGTCAG) = 1100.

In summary, given a finite set of complexes A, self-assembly rules R, and codebook C, we can
obtain a language of complexes LR;A as well as a language of strings

LR;A;C = C(denature(ligate(LR;A))):

We now turn to our results. The theorems are stated, explained, and examples are given. Full
proofs will appear elsewhere.

3.2.3 Linear Self-Assembly is Equivalent to Regular Languages

In this section we address the question of what can be computed by the self-assembly DNA which
obeys Properties (1-4), (5a), and (6a) or (6b). This is the familiar case of the self-assembly of long
duplex DNA from many small oligonucleotides or sticky-ended fragments. That is, self-assembly
begins with oligonucleotides or duplex DNA with sticky ends, and proceeds at a constant temper-
ature, allowing only permanent binary events with a single perfectly complementary hybridization
site and no intramolecular hybridization. We make this question precise in our model by asking,
what languages of strings L can be achieved as L

RT

1
;A;C

for some choice of T , C, and A where A
contains only linear duplex complexes?

The following26 can be proved by construction:
Theorem 1. (1) For all regular languages L, there exists a positive integer T , a codebook C,

and a set of linear duplexes A such that L = L
RT

1
;A;C

. (2) For all positive integers T , codebooks
C, and sets of linear duplexes A, L

RT

1
;A;C

is a regular language.
We will sketch the construction used in the proof of (1) – see Figure 3.11 for an example.

Consider a regular grammar G for L. We design sufficiently dissimilar sequences Si (we call their
Watson-Crick complements S0

i
) for all the terminal and nonterminal symbols in G. For each rule

A! p1 : : : pnB, we design a duplex with a sticky end S0
A

, and internal duplex region Sp1 : : : Spn ,
and a sticky end SB if B is present. We also design a duplex with one blunt end and a sticky
end SS , to represent the start symbol S. These duplexes make up the initial set of complexes A.
T is chosen to be the length of the nonterminal sequences Si. After self-assembly, the terminal
complexes in L

RT

1 ;A
will correspond to derivations in G. After ligation, each complex will be a

blunt-ended duplex whose sequence consists of terminal sequences interspersed with nonterminal
sequences. A codebook with Ci = Si for each terminal symbol i will “erase” the nonterminal
sequences; thus L

RT

1 ;A;C
will be exactly L. 2

A sketch of the proof of (2) is as follows: we construct a regular grammar G which generates
exactly the strands in denature(ligate(L

RT

1 ;A
)). This requires creating a nonterminal symbol for

each sticky end of a duplex in A, and considering all (finitely many) T -or-more base overlaps
of these sticky-ends; a grammar rule is provided for each such interaction. Care must be taken

26We note that this theorem still holds when “duplexes” is replaced by “strands”.
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Figure 3.11: The initial complexes A corresponding to the regular grammar GE , and an exam-
ple derivation. Note that the self-assembly of the derivation could have occurred in any order.
Subsequent ligation and denaturing will produce two strands (top and bottom) from this terminal
complex. The codebook C defines C0 = CAG and C1 = CTC . We use R3

1.

for gaps and for sticky ends which have no interactions – both lead to termination of the strand
sequence, and may require a rule using the start symbol S. Translation by the codebook can be
effected by applying a nondeterministic finite state transducer (Ginsburg 1966) to LG, yielding a
regular language equal to L

RT

1
;A;C

. 2
Thus, our model for linear self-assembly does not permit very interesting computations. It

should be emphasized that simple extensions might allow for more complex computations. For
example, suppose hairpins appear in A in addition to duplexes. Then, for example, we could

replace the duplex for S (Figure 3.11) by the hairpin
T

T

T

T

C

GT

A

T T T

C C

G G , and change the codes for 0 and 1 to
the Watson-Crick palindromes CCGG and CGCG. Now both the top and bottom strands code
the 0 and 1 sequences; furthermore, after ligation the top and bottom strands are joined together
by the hairpin. Consequently, we generate the set of all palindromes in which the number of ones
is a multiple of four – which is not a regular language! How far can we push this idea?

3.2.4 Dendrimer Self-Assembly is Equivalent to Context-Free Languages

Dan Abrahams-Gessel pointed out to me that dendrimer self-assembly looks formally identical
to context-free grammars. This observation translates very nicely into DNA self-assembly of
branched junctions into tree-like complexes. Therefore, in this section we address the question
of what can be computed by the self-assembly of DNA which obeys Properties (1-4), (5a), and
(6b-d). That is, self-assembly begins with duplexes, hairpins, and 3-armed junctions with sticky
ends, and proceeds at a constant temperature, allowing only permanent binary events with a single
perfectly complementary hybridization site and no intramolecular hybridization. We note that
this form of self-assembly has not been widely studied in the lab, and that full self-assembly
would be limited not only by material but also by geometric (steric) interference and volumetric
constraints27. Nonetheless, our abstract model allows us to ask the following precise question:

27Consider a tree which branches at every opportunity. It has 2n nodes within n steps of the center; but the volume
of space within n steps grows only as n3.
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what languages of strings L can be achieved as L
RT

1 ;A;C
for some choice of T , C, and A where A

contains only duplexes, hairpins, and 3-armed junctions?
An extra complication that immediately arises is the possibility that circular strands may form.

Recall our convention that denature returns “dotted” sequences to represent circular strands, but
didn’t specify which permutation of the circle to use. It becomes convenient to work with equiva-
lence classes of sequences, where �S�= �T if the sequences S and T are circular permutations of
one another. Languages L1 and L2 are deemed equivalentif for every sequence S in one language,
there is an identical or equivalent sequence T in the other language.

The following28 can be proved by construction:
Theorem 2. (1) For all context-free languages L, there exists a positive integer T , a codebook

C, and a set of duplexes, hairpins, and 3-armed junctions A such that L = L
RT

1 ;A;C
. (2) For

all positive integers T , codebooks C, and sets of duplexes, hairpins, and 3-armed junctions A,
L
RT

1
;A;C

is equivalent to a context-free language.
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Figure 3.12: The initial complexes A corresponding to the regular grammar GF . The codebook
C defines Cx = CCTT; Cy = TTCG; Cz = CATT; C( = CACA; C) = TGTG; C+ = ACCA,
and C

�
= TCCT . We use R3

1.

We will sketch the construction used in the proof of (1) – see Figure 3.12 and 3.13 for an
example. The construction is similar to that in Theorem 1. Consider a context-free grammar
G for L. Note that there is an equivalent grammar Ĝ which uses rewriting rules of the form
A ! pBqCr where p, q, and r are (possibly null) strings of terminal symbols, and A, B, and C
are single nonterminal symbols (or null). Again, we design sufficiently dissimilar sequences Si for
all the terminal and nonterminal symbols used inĜ. For rules of the formA! pB or A! Bp (B
not null), we design a duplex as before. For rules of the form A! p, we design a hairpin with the
sequences for p in the stem. We design a 3-armed junction for each rule of the form A! pBqCr

(B and C not null); it has sticky ends for S0
A

, SB , and SC , and the sequences for p, q, and r are

28We note that this theorem still holds when “duplexes, hairpins, and 3-armed junctions” is replaced by simply
“complexes”. That is to say, this is a fully general theorem for self-assembly under RT1 .
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placed on the arms. As before, we design a blunt-ended duplex for the start symbol S. These
complexes make up the initial set of complexes A. As before, at the appropriate “temperature” T ,
the terminal complexes will correspond to derivations inĜ, and ligation will convert each complex
into a single strand which encodes the derivation. Processing with the codebook for the terminal
symbols will “erase” the nonterminal sequences, and L

RT

1
;A;C

will be exactly L. 2
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Figure 3.13: An example derivation by self-assembly of the complexes A corresponding to the
regular grammar GF . Note that the self-assembly of the derivation could have occurred in any
order, using R3

1. Subsequent ligation will produce a single strand from this terminal complex.
Inset: the three-armed junction corresponding to the generic rewriting rule A! pBqCr.

The proof of (2) also follows the form of the proof of Theorem 1, only now we construct a
context-free grammar G which, loosely speaking, generates sequences corresponding to backbone
paths through complexes in ligate(L

RT

1 ;A
), where gaps are filled in with the symbol 3, and where

several (but not necessarily all) permutations of each circular strand are given using �. This lan-
guage is then passed through a nondeterministic transducer which returns the strand sequences
in fA;C;G; Tg and circular strand sequences in fA;C;G; T; �g. As before, the final strings are
produced by another nondeterministic transducer, which this time translates using the codebook.
Thus the final language is context-free, and is equivalent to L

RT

1
;A;C

. 2
More intuitively, we can reason that because no intramolecular hybridizations are allowed by

RT
1 , the initial complexes can aggregate only into tree-like structures. No matter how convoluted
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the original complexes are, paths through the resulting tree-like structures are well modeled by
context-free languages.

Our model of self-assembly of DNA into tree-like structures has strictly more computational
power than the model of linear self-assembly. However, it is still a far cry from universal com-
putation. It turns out that when we attempt to model intramolecular interactions, in the form of
cooperative binding sites, a much more powerful model results. We consider a particular case in
the following section.

3.2.5 Two Dimensional Self-assembly is Universal

To prove that two dimensional self-assembly can be universal, it suffices to demonstrate a re-
stricted class which is universal. We review the class of structures introduced in Winfree (1996b),
which are geometrically based on a lattice of double crossover (DX) units of DAO type Fu and
Seeman (1993). It was shown in Winfree (1996b) that the self-assembly of DX units can directly
mimic the operation of an arbitrary one dimensional cellular automata system. An example is
shown in Figure 3.14, where a simple blocked cellular automaton rule (corresponding to the un-
restricted grammar GP of Section 3.2.1, but without the termination rules) is used to generate a
Sierpinski triangle pattern.

The model of self-assembly used here follows Properties (1-4), (5b), and (6e), and it is moti-
vated by additional physical concerns. As shown in Figure 3.14, the hybridization events may now
involve twobinding sites arranged as a slot. Geometry becomes important; only sticky ends which
are close to each other and arranged properly may form a slot where binding can occur. Physically,
one sticky end of an unattached DX unit would hybridize to one side of the slot, followed shortly
by (the now intramolecular) hybridization of the DX unit’s other sticky end to the slot’s other
binding site. For full computational generality, it is critical that a DX unit which matches one site
in a slot, but not the other site, will not hybridize to the lattice. Under appropriate conditions, DX
units which bind to only one site in a slot would soon dissociate, while fully matching DX units
would bind nearly irreversibly. We therefore model slot-filling as a single permanent binary event
involving two binding regions, and T is chosen so that single-site binding will not occur.

We emphasize that this form of DNA self-assembly has not yet been demonstrated experimen-
tally, although we report some preliminary results in Section 4.1.

We must define new self-assembly rules: RT2 allows hybridizations allowed by RT1 , and addi-
tionally allows two-region slot-filling hybridizations between complexes containing the subgraphs
shown in Figure 3.15, so long as the total number of basepair edges in B is at least T . This rule is
meant to model local geometry in complexes; it will be a good model only for certain structures,
including (we believe) the ones used in our construction.

The following can be proved by construction:
Theorem 3. (1) For all recursively enumerable languages L, there exists a positive integer

T , a codebook C, and a set of duplexes and DX units A such that L = L
RT

2
;A;C

. (2) For all
positive integers T , codebooks C, and sets of duplexes and DX units A, L

RT

2 ;A;C
is equivalent to a

recursively enumerable language.
The proof of (1) is based on the constructions in Winfree (1996b). As cellular automata are ca-

pable of universal computation, for example by directly simulating Turing machines, we conclude
that two dimensional self-assembly is universal. (2) follows because there is an algorithm for gen-
erating all the complexes in LR;A so long as R is computable: keep trying new hybridizations of
complexes known to be in the language, and remember the resulting complex. 2

Although universal, one dimensional cellular automata are not often a convenient model for
computing functions of interest, although they are faster and more efficient than 1-tape Turing
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Figure 3.14: An algorithmic pattern in a self-assembled lattice. At the top, the seven initial DX
units in A are shown (the black dot is a visual aid to identify “black” complexes), involving 22
oligonucleotides. The corresponding rewriting rules from GP are presented in boxes. The units
use 12 unique sticky end sequences, denoted by fL;R; B ;!B ; W ;!Wg and their complements L0

etc. The L and R sequences are both length T ; the other sequences are length T=2. Upon self-
assembly according toRT2 , a V-shaped chain of the lower three units is formed due to hybridization
of L and R, while the open slots in the initial chain are filled by the unique unit whose sticky ends
match those on both sides of the slot. In this example, the process continues indefinitely. Each
strand in ligate(L̂

RT

2 ;A
) represents one or two columns of Pascal’s triangle mod 2.

B B

Figure 3.15: Two allowed slot-filling hybridizations in R62. These graphs represent requires sub-
graphs of the complexes C1 and C2 in C1 +B C2 = C3. Other positions of nicks are also allowed,
as are other lengths of the duplex regions.

Machines, due to their parallelism.

3.2.6 Solving the Hamiltonian Path Problem

As a concrete example of using two dimensional self-assembly for computation, we will solve the
same Hamiltonian Path Problem (HPP) used in Adleman (1994). Recall that the problem is to
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find a path from node 1 to node N which visits every node in G exactly once. Our algorithms for
solving HPP will be based on:

1. Generate all paths from node 1 to node N .

2. In each path, sort the vertices into increasing order.

3. For each path, check that the result is exactly “1; 2; 3; : : : ; N”.

4. Output any path which passes the test, if one exists.

In a preparatory step, DNA sequences are designed for the given graph and synthesized. Steps
1-3 will occur as a single self-assembly step, while Step 4 consists of sequencing circular DNA of
known length.

For the graph used in Adleman (1994) (shown in Figure 3.16a), N = 7 and we will require
a total of 68 DX units of DAE type. Shown in Figure 3.16b, units 1 through 20 are responsible
for Step 1 of the algorithm (the bottom layer in Figure 3.17a,b); these units are analogous to the
oligos in Adleman’s solution29. Units 19 through 61 are responsible for Step 2 of the algorithm;
sorting is accomplished by the Odd-Even Transposition Sort (Knuth 1973). When the symbol1
has travelled all the way to the right, the sorting is complete and Step 3 is initiated, using units 62
through 68.

Each terminal complex either (a) encodes a valid Hamiltonian Path, in which case the com-
plex is complete (Figure 3.17a), and ligation cyclizes the outer ring, but not the inner ring30; or
(b) encodes an invalid path, in which case the terminal complex contains unfilled, open slots (Fig-
ure 3.17b) and will produce no cyclic strands when ligated31. Thus Step 4 can be achieved by
separating cyclic from linear DNA strands (e.g. by 2D gel electrophoresis, by exonuclease di-
gestion, or by affinity purification based on the DONE sequence) followed by amplification and
sequencing.

Let us briefly compare this molecular algorithm to the one used in Adleman (1994). To solve
a graph with N nodes and E edges, Adleman used roughly N +E oligos and N laboratory steps.
We would use roughly E2=N +N2 +N DX units (each requiring up to 5 strands) and a constant
number of laboratory steps (synthesis, annealing, sequencing)32.

Because two dimensional self-assembly can simulate arbitrary cellular automata, similar algo-
rithms can be designed for any computational purpose. For example, an N -variable size s Circuit-
SAT problem can be solved using roughly Ns DX units and a constant number of laboratory steps
after synthesis.

29Adleman’s oligos encoded individual edges in the graph, whereas ours encode pairs of edges. Also, knowing that
a Hamiltonian path in this graph must visit exactly 7 nodes, our units are devised such that only odd-length paths can
form completely.

30This can be ensured either by leaving an unmatched base on the sticky ends for interior units, or by phosphorylating
only units which occur on the outer edge.

31Note that if a path visits a node twice, there will be a gap in the “Step 2” portion of the terminal complex; if a path
fails to visit some node, there will be a gap in the “Step 3” portion of the terminal complex.

32How feasible these imagined laboratory steps would be is, of course, an open question. However, once the labora-
tory techniques have been debugged, conceivably our algorithm could be carried out in a single day’s work – regardless
of the size of the graph (volume permitting). A concern is that, more so than in Adleman’s algorithm, the success of our
algorithm is critically dependent upon ligation yields. For example, if ligation is 80% effective, then only 0:830 = 0:1%
of the correct terminal complexes will be fully cyclized in our N = 7 graph. Also, since each path requires a DNA
molecule roughly 100 times larger than the DNA used in Adleman’s algorithm, greater reaction volumes will be neces-
sary.
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3.2.7 Three Dimensional Self-Assembly Augments Computational Power

A trivial corollary of the universality of two-dimensional self-assembly is that if three dimensional
structures are allowed, self-assembly is still universal. It is of greater interest if we can exploit all
three dimensions to allow for more efficient or more reliable computations. We propose a scheme
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Figure 3.17: Terminal complexes after annealing. Black dots show nicks which will be ligated.
(a) The lattice verifying the Hamiltonian path 1452367. (b) The lattice rejecting the invalid path
123452367.

to do exactly that, again for concreteness using DAO units as our basic building block. In this
section, we will present some physical considerations, but we will not formally define RT3 .

We begin by noting that the solid angle between two adjacent DAO units is determined by
the length of the linker arm between them. For the planar lattice, we choose a length such that
the angle is approximately 180�. Alternatively, we can choose lengths such that the angle is near
120�, the appropriate value for a “honeycomb lattice” as shown in Figure 3.18.

As in the case of the two dimensional lattice of DAO units, computation is brought about by
judicious choice of the sticky end sequences on several DAO units. The three dimensional lattice
thus formed is equivalent to the space-time history of a 2D blocked cellular automata.

The particular incarnation of three dimensional lattice chosen here is clearly not unique, and
it is suggested more as a brain-teaser than as a serious proposal; other geometries are possible,
perhaps having preferable practical characteristics.
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Figure 3.18: Plan for three dimensional lattice. (a) Three cross-sections through the final lattice,
corresponding to the three sections indicated in (b). Circles represent cross-sections through a
double helix of DNA; bars indicate which helices are part of the same DAO unit. (b) Relative
angles of five DAO units are indicated. For perfect 120� angles, helical twist between 31.5 and
35.5 �= bp is required. (c) Detail of the DAO units. A single DAO unit, with sticky end a comple-
mentary to A and b complementary to B, suffices to generate the entire lattice. For computations,
the sticky ends are indexed s.t. ai binds only Ai and bi binds Bi.

3.2.8 Discussion

We have analyzed the computational power of three different regimes of self-assembly in our ab-
stract model, and we have speculated on an extension into the self-assembly of a three dimensional
lattice.

The essential construction in the linear case is due to Adleman (1994) who used it to construct
paths through graphs. Boneh et al. (1996b) and Winfree (1996b) observed that linear self-assembly
is capable of generating regular languages. Here, we state the result in the context of our formal
model, and we show that linear self-assembly of duplexes is limited to regular languages. This
point requires making the distinction between self-assembly processes with and without hairpins,
as shown by the palindromes example. Linear self-assembly has been exploited in many laboratory
experiments – both by molecular biologists and by people interested in molecular computation –
and although its intricacies are not completely understood, there is a wide foundation of practical
experience.

The self-assembly of branched junctions into dendrimer structures seems to be a relatively
unexplored idea. For example, in Ma et al. (1986) it is observed that identical three-armed junc-
tions with two complementary sticky ends can cyclize. If cyclization cannot be prevented, many
context-free grammars would be impossible to implement by self-assembly. Another concern
comes from geometry: if the desired tree-like structure contains too many branches, steric hin-
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drance may prevent further associations from occurring. Thus it is not known to what extent the
technique will be practical.

The self-assembly of DX units into a two-dimensional lattice is also an unconventional idea,
yet to be demonstrated in the laboratory. Some first steps in this direction are reported in Sec-
tion 4.1, where the slot-filling reaction is explored.

It is interesting to observe that the Chomsky Hierarchy of languages, developed originally
for the study of human languages, also arises naturally in the study of self-assembling structures.
The progression from regular to context-free to recursively enumerable languages can be seen to
parallel both (a) the progression from linear to dendrimer to planar lattice structures, and (b) the
progression from “rule molecules” with effectively one input and one output, to those with one
input and two outputs, to those with two inputs and two outputs.

One should note that all the previous arguments ignored the kinetic framework implicit in the
process of annealing that we originally consider. Specifically, we expect that longer complemen-
tary regions hybridize first. Annealing could be represented in our model as recursive computation
of languages:

LannealR1;A;C
= C(denature(ligate(L̂

R1
1 ;L̂R2

1
;L̂
R3;:::

)))

The kinetic aspects of this model of linear self-assembly may themselves be exploitable for com-
putation. Intermolecular interactions other than the ones considered here might also provide com-
putational advantages. Issues of concentrations and finite supply of DNA must also go into any
more practical analysis.

3.3 Simulation of Self-Assembly Thermodynamics and Kinetics

Abstract33 Winfree (1996b) proposed a Turing-universal model of DNA
self-assembly. In this abstract model, DNA double-crossover molecules self-
assemble to form an algorithmically-patterned two-dimensional lattice. Here,
we develop a more realistic model based on the thermodynamics and kinetics
of oligonucleotide hydridization. Using a computer simulation, we investigate
what physical factors influence the error rates (i.e., when the more realistic
model deviates from the ideal of the abstract model). We find, in agreement
with rules of thumb for crystal growth, that the lowest error rates occur at the
melting temperature when crystal growth is slowest, and that error rates can
be made arbitrarily low by decreasing concentration and increasing binding
strengths.

Early work in DNA computing (Adleman 1994; Lipton 1995; Boneh et al. 1996a; Ouyang
et al. 1997) showed how computations can be accomplished by first creating a combinatorial li-
brary of DNA and then, through successive application of standard molecular biology techniques,
filtering the library to identify the DNA representing the answer to the mathematical question. In
these approaches, the problem to be solved determines the sequence of laboratory operations to be
performed; the length of this sequence grows with problem size, intimidating many experimental
researchers. Consequently, a few researchers have begun looking into chemical systems capable

33Results in this section also appear in Winfree (in press a).
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of performing many logical steps in a single reaction, thus leading to paradigms for DNA com-
puting where the problem to be solved is encoded strictly in DNA sequence; a fixed sequence of
laboratory operations is performed to determine the answer to the posed question. Promising ap-
proaches include techniques based on PCR-like reactions (Hagiya et al. in press; Sakamoto et al.
in press ; Hartemink and Gifford in press; Winfree in press b) and techniques based on DNA self-
assembly (Winfree 1996b; Winfree et al. in press; Jonoska et al. in press). Although there has been
experimental work exploring all these models, typically only a few logical operations have been
demonstrated. It is at this point unclear how well any of the techniques can be scaled up. Short of
full experimental demonstration, realistic simulations of the chemical kinetics and thermodynam-
ics can shed light on what can be expected of these systems, and can point to parameter regimes
where the experiments are most likely to succeed. This paper presents a preliminary analysis of
the self-assembly model of Winfree (1996b).

To motivate the self-assembly model, we consider the physical process of crystallization. Dur-
ing crystal growth, monomer units are added one-by-one at well-defined sites on the surface of
the crystal. There may be more than one type of monomer, in which case there may be several
different types of binding site, each with affinity for a different monomer; typically a periodic
arrangement of units results. The question of whether periodic lattices will necessarilyresult has
been studied in mathematics in the context of two-dimensional tilings (Grünbaum and Shephard
1986). A set of geometrical shapes (the tiles) are said to tile the plane if the tiles can be arranged,
non-overlapping, such that every point in the plane is covered. A surprising result in the theory of
tilings is that there exist sets of tiles which admit only aperiodic tilings (Berger 1966; Robinson
1971), the most elegant being the rhombs of Penrose (1978). The variety of aperiodic patterns is
limitless: using square tiles with modified edges, the time-space history of any Turing Machine
can be reproduced by the tiling pattern34 (Wang 1963; Robinson 1971). Is it possible to trans-
late these results back to a physical system, to produce aperiodic crystals, or even crystals which
“compute”? Already, there is an extensive literature on “quasicrystals” (Steinhardt and Ostlund
1987), materials which exhibit “prohibited” 5-fold symmetry and which are thought to be related
to the aperiodic Penrose tiles. The purpose of this paper is to examine the suggestion in Winfree
(1996b) that DNA double-crossover molecules can be used to make programmable “molecular
Wang tiles” that will self-assemble into a 2D sheet to simulate any chosen cellular automaton. It
has already been shown experimentally that double-crossover molecules can be designed to as-
semble into a periodic 2D sheet (Winfree et al. 1998) and that a single logical step can proceed in
a model system. In this paper we argue that it is physically plausible to perform Turing-universal
computation by crystallization.

3.3.1 An Abstract Model of 2D Self-Assembly

The results in the theory of tilings are entirely existential, saying nothing about howa correct tiling
is to be found. What is missing is a mechanism for producing tilings. In this section we describe
the relation of computation and self-assembly by presenting an abstract model of two-dimensional
(2D) self-assembly, which we call the Tile Assembly Model. The fundamental units in this model
are unit square tiles (also called monomers) with labelled edges. We have an unlimited supply of
tiles of each type. Aggregatesare formed by placing new tiles next to and aligned with existing
ones such that sufficiently many of their edges have matching labels. Tiles cannot be rotated or
reflected. To define the model completely, we must be precise about when “sufficiently many”

34Even more is possible: there exist tile sets which produce non-recursivepatterns (Hanf 1974; Myers 1974)! How-
ever, it is unlikely that any physical process could give rise to non-recursive patterns, in any computable amount of
time. All models discussed in this paper are strictly computable.
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edges match. Each edge label �i has an associated strengthgi, which must be a non-negative
integer. At “temperature” T , an aggregate of tiles can grow by addition of a monomer whenever
the summed strength of matching edges exceeds T (mismatched labels neither contribute nor
interfere) – these are called stableadditions. We say that a set of tiles P producesaggregate A
from seedtile T if A can be obtained from the single tile T by a sequence of zero or more stable
additions of monomers; in which case, we also say simply that P produces A (if there is no need
to specify the seed tile).

To illustrate this model, consider the 7 tiles shown in Figure 3.19d. The four tiles on the left
are called the rule tiles because they encode addition mod 2; the three tiles on the right are the
boundary tiles; the one with two strength-2 edges is the corner tile. There are 4 edge labels, of
strengths 0, 1, 1, and 2. At temperature T = 0, every possible monomer addition is stable, and
thus random aggregates are produced. At temperature T = 1, at least one edge must match for
an addition to be stable, but now the arrangement of tiles within an aggregate depends upon the
sequence of additions. At temperature T = 2, there is a unique choice for the tile in each position
relative to the corner tile, independent of the sequence of events. Under these conditions, this set
of tiles produces the Sierpinski Triangle by computing Pascal’s Triangle mod 2. At temperature
T = 3, no aggregates are produced because no monomer addition to another monomer is stable.
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Figure 3.19: The Sierpinski Tile set is shown in (d). The strengths of edges are marked, and the
edge labels are denoted graphically. In (a) - (c), small tiles are used to indicate possible stable
additions to the aggregate. (a) When T = 0, any tile addition is stable, and a random aggregate
results. (b) When T = 1, typically several stable possibilities at each site; again, a random
aggregate results. (c) When T = 2, there is a unique possibility at each site, resulting in unique
pattern formation.

Whereas it is impossible to uniquely produce non-trivial aggregates when T = 0, an arbitrary
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shape can be produced at T = 1 by assigning a unique tile to each position and giving each edge
a unique label. However, this requires the use of many tiles. At T = 2 we can produce interesting
patterns with few tiles.

A hint of the computational power of the Tile Assembly Model when T = 2 is provided by
a simulation of cellular automata35. The proof we develop below demonstrates two important
points. First, even though tile addition is stochastic, a unique pattern is produced regardless of the
order of events, because only stable tile additions are made. Second, the arrangement of tile types
on the 1D growth front of the aggregate can represent information (much like how the arrangement
of 0’s and 1’s on a 1D tape represents information for a Turing Machine), and stable tile additions
can modify that information by specified rewrite rules, resulting in fully general computation.

Our simulation is based on one-dimensional blocked cellular automata (BCA)36, a variety of
cellular automaton (CA). The example of Pascal’s Triangle mod 2 (Gardner 1966) has been studied
as a cellular automaton by Wolfram (1984). It is known that BCA and CA are Turing-universal
models, and simple simulations of Turing machines have been demonstrated (Smith 1971; Biafore
preprint). We begin by defining BCA.

Definition: A k-symbol BCA is defined (using the integers f1; 2; : : : ; kg = Zk) by a rule
table

R = f(li; ri)! (l0i; r
0

i)g � (Zk �Zk ! Zk �Zk):
If R is a function, then the BCA is termed deterministic. The statec of the BCA assigns a symbol
to every location on an infinite linear array of cells. At each time step every cell in ct is rewritten
to produce ct+1; thus we use ct(x) to denote the symbols written in cell x after t steps. The BCA
uses R to re-write pairs of cells in c, alternating between even and odd alignments of the pairing:
for even t and even x, and for odd t and odd x,

�
(ct(x); ct(x+ 1))! (ct+1(x); ct+1(x+ 1))

�
2 R:

An input to a BCA computation is a state c0 with a finite number of non-zero cells. For conve-
nience and without loss of generality, we will confine our attention to n-bit binary inputs b, and
write c0 = b to refer to an input where c0(i) = bi for 1 � i � n and c0(i) = 0 otherwise.

The computation of the BCA defines ct(x) over the half-plane t � 0. We will show how to
construct a set of tiles P such that in all aggregates produced from the seed tile T0, if there is
a tile at position (i; j) with respect to the seed tile, then the tile has edges encoding ci+j(i � j)

and ci+j(i � j + 1). Thus the time-history of the BCA computation is reproduced exactly in the
self-assembled tile aggregate.

First we show, for any n-bit BCA input b, how to generate the set of n + 3 input tilesI(b).
Figure 3.20a shows the construction. Because the only edge matches possible with these tiles are
strength 2, at T = 2 all produced aggregates are essentially as shown, with variable length regions
encoding “zero” on either side. The tile whose top edges encode bits b1 and b2 is referred to as
the seed tile T0 and is used as the reference for indexing tiles by location. The bottom of each

35This result, presented in less detail in Winfree (1996b), translates Wang’s simulation of Turing Machine execution
by the Tiling Problem (Wang 1963) into the Tile Assembly Model given here. The Tiling Problem can be viewed as
asking for the ground state of an N-state Ising model, which can be seen as a question of equilibrium thermodynamics
in the limit as T ! 0. Not only can Ising models be produced which are Turing-universal because the ground state
reproduces the space-time history of any chosen Turing Machine, but the proof that tiles sets can be found which tile
the plane non-recursively shows in fact that the ground state of an Ising model can be non-recursive. Thus it is essential
to study a kinetic, rather than thermodynamic, model.

36BCA (Wolfram 1994) are also known as partitioning CA (Margolus 1984) and as 2-body CA or particle machines.
They generalize the lattice gas model (Hardy et al. 1976), and are commonly studied in two dimensions.
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input aggregate contains only strength-0 edges, so no further additions can occur there. The top of
each input aggregate contains exclusively strength-1 edges, arranged in a zig-zag forming series
of binding sites, called slots, where a new tile could make contact with two strength-1 edges. For
aggegates containing the seed tile T0, these edges encode the input c0 and the pairing of cells.
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Figure 3.20: Using the Tile Assembly Model to simulating a BCA computing from a binary input.
(a) Input tiles I(b) for b = 10011101, and an aggregate they produce at T = 2. Here we use
conventions similiar to Figure 3.19 to indicate the strength of edges: thick edges are strength-0,
doubled edges are strength-2, and all other edges are strength-1. (b) Schematic showing a rule
tile generated from the BCA rule (l; r)! (l0; r0), and an aggregate produced by the rule tiles and
input tiles. Note the dotted lines indicating the default coordinate system with origin at the seed
tile T0. In this schematic, the edge labels for the rule tiles are not identified.

Next, for BCA rules R we generate a set PR of k2 tiles as shown in Figure 3.20b, using one
tile for each rule (l; r) ! (l0; r0). All of these rule tiles have exclusively strength-1 edges, so at
T = 2 they cannot form aggregates with themselves; they must be seeded by the input tiles. Thus,
when the tile sets PR and I(b) are mixed, rule tiles can sit down in the slots presented by the
input aggregates iff both of the presented edges match. Consider an aggregate in which: (1) only
rule tiles are present above i + j = 0, and (2) every rule tile has both of its lower edges correctly
matched. It follows directly from the definitions that the edges presented by the tile at (i; j) has
edges encoding ci+j(i � j) and ci+j(i � j + 1) because this is true of the input tiles, and every
rule tile respects the update rule for the BCA. What remains to be shown is that (1) and (2) hold
for every aggregate produced at T = 2. This is done by induction on N , the number of rule tiles
in an aggregate. For convenience, we refer to an aggregate containing exactly N rule tiles as an
N -aggregate.

Base case: (1) and (2) hold for any 0-aggregate.
Induction: Assume (1) and (2) hold for all N -aggregates. Note that (1) and (2) together imply

that above i + j = 0, the exposed edges of the aggregate are all upper edges. Any (N + 1)-
aggregate must be produced from an N -aggregate by a sequence of stable additions of input tiles
followed by a stable addition of a rule tile. (1) holds for the new aggregate because all exposed
edges above i + j = 0 are upper edges labelled from Zk, while all lower edges of input tiles are
labelled from fL;R; s1; : : : ; sng. (2) holds for the new aggregate because a rule tile must match
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two edges to be added, and only upper edges are presented, so the rule tile’s two lower edges must
match. 2

Thus, we have proven:
Theorem: Let R be a BCA, and let c(t; x) be the value of cell x at time t for a computation

on input b. If an aggregate produced from seed T0 by the tile set P = PR [ I(b) has a tile in
position (i; j), then the tile’s upper edges encode ci+j(i� j) and ci+j(i� j + 1).

In other words, the Tile Assembly Model uses asynchronous and self-timed updates to sim-
ulate any deterministic one-dimensional BCA. Similar arguments can be used to show that the
Tile Assembly Model can simulate any non-deterministicone-dimensional BCA, in the sense that
every possible aggregate produced according to the Tile Assembly Model will represent a possible
history of execution of the non-deterministic BCA. In this case, R will contain rules with identical
left-hand sides, and consequently in some slots multiple rule tiles will match both exposed edges;
thus a non-deterministic choice must be made. Alternatively, a non-deterministic set of input tiles
may be used to generate a combinatorial set of possible input strings, followed by deterministic
evaluation of each input. The potential for non-determinism is important for using self-assembly
to solve combinatorial search problems in the spirit of Adleman (1994).

3.3.2 Implementation by Self-Assembly of DNA

We follow Winfree (1996b) in developing a molecular implementation of the Tile Assembly
Model: each tile is represented by a DNA double-crossover (DX) molecule (Fu and Seeman 1993)
with four sticky ends whose sequences represent the edge labels. We would like these molecular
“tiles” to self-assemble into a two-dimensional sheet according to the rules of the Tile Assembly
Model (see Figure 3.21). Thus, we need to show:

1. Double-crossover molecules can designed to self-assemble into two-dimensional crystal lat-
tices – in preference over, for example, random tangled nets, tubes, or other structures. This
has in fact now been demonstrated in an experimental system (Winfree et al. 1998).

2. The strengths of edge labels in the model can be implemented by designing the sticky end
sequences with specific energetics of hybridization. The DNA hybridization strengths de-
pend primarly on the number of base pairs, with adjustments for their particular sequence,
the buffer conditions, and temperature. Thus, for example, longer sticky ends can be used
to represent edge labels with greater strength.

3. The binding of DX molecules into slots, where two sticky end sequences must both hy-
bridize, is cooperative– thus, strengths “add”. We will argue below that this is a priori
likely; furthermore, suggestive experimental evidence has been presented in Winfree et al.
(in press).

4. There is a physical parameter analogous to T which determines the strength required for
association of molecular tiles. This parameter can be, for example, the temperature T . DNA
sticky ends bind more strongly at low temperatures, and conversely, at higher temperatures
more sticky-end interactions will be necessary for stable addition.

5. All these considerations can come together to produce molecular self-assembly in accor-
dance with the Tile Assembly Model.
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Figure 3.21: The DNA representation of Wang tiles. (a) A molecular Wang tile (double crossover
molecule) representing the rule (l; r) ! (l0; r0). The molecule consists of an interior structural
region and four double-stranded arms, each terminated by a single-stranded sticky end. Edge
labels are implemented using unique sticky-end sequences. Note that sticky-ends for the lower
edges use Watson-sense sequences for each label, while the upper edges use the complementary
Crick-sense sequences. This ensures the proper relative orientation of tiles. As shown, the same
molecule represents both a Wang tile and its reflection about the vertical axis; however, using four
encodings for each label (Wleft;Wright; Cleft; Cright) eliminates reflection-sense binding. In the
double crossover molecule, the crossover points are circled, and dots are placed at the 50 ends
of each strand. Color is used to indicate the edge label being represented, and not the identity
of strands (each strand is multi-colored). (b) The self-assembly of 9 molecular Wang tiles, of 5
distinct types. These correspond to the 9 tiles at the bottom of Figure 3.19c. Note that the corner
and boundary molecules have hairpin sequences, and thus no sticky ends, on certain of their lower
arms; this implements a tile with strength-0 labels on its lower edges. Also note that on the corner
and boundary molecules, the red and orange sticky ends are sufficiently longer than the sticky ends
on the rule molecules to implement a strength-2 interaction.

Our approach for arguing these points is based on the study of the thermodynamics and kinetics
of DNA oligonucleotide hybridization (Wetmur 1991). We review here the elements of this theory
that are needed for our discussion.

Let ssDNA1 and ssDNA2 be two Watson-Crick complementary oligonucleotides, and let ds-
DNA be the double-stranded helical complex that results upon their hybridization. The reaction
can be modelled as a two-state first-order system:

ssDNA1 + ssDNA2

kf���*)���
kr

dsDNA:

We can write a differential equation for the rates of change of the concentration of each species.
The units for kr are 1/sec, so kr [dsDNA] gives the rate in M/sec of dissociation of the double helix;
the units for kf are 1/M/sec, so kf [ssDNA1][ssDNA2] gives the rate in M/sec of hybridization to
form new double helical molecules. Altogether, we have:

� _[dsDNA] = _[ssDNA1] =
_[ssDNA2] = kr [dsDNA]� kf [ssDNA1][ssDNA2]
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The rate constants kf and kr can be estimated from the DNA sequence and the temperature T
(in K), assuming the reaction is taking place in a standard buffer. For very short oligonucleotides,
the forward reaction has a diffusion-controlled rate-determining step (Quartin and Wetmur 1989)
approximately independent of oligo length and sequence, so:

kf = Af e
�Ef=RT � 6� 105 /M/sec;

where Af = 5 � 108 /M/sec and Ef = 4 kcal/mol is the activation energy for the reaction37.
The reverse rate, on the other hand, is very sensitive to oligo length and sequence:

kr = kfe
�G

�
s=RT ;

where R = 2 cal/mol/K and �G�s < 0 is the free energy released as heat by a single hy-
bridization event38. The standard free energy �G�s can be calculated from the standard enthalpy
�H�s and the standard entropy �S�s of the reaction: �G�s = �H�s � T�S�s . For reactions taking
place in commonly used buffers, the standard enthalpy and entropy can be reliably estimated from
the sequence according to a nearest-neighbor model (SantaLucia et al. 1996); however, for the
purposes of this discussion, we can use the coarser approximation for length-s oligonucleotides39 :
�H�s � �8s kcal/mol and �S�s � �22s � 6 cal/mol/K. Thus we can predict both kf and kr for
the hybridization of complementary oligonucleotides. This allows us to predict the equilibrium
concentrations of each species via the equilibrium constant

K
:
=

[dsDNA]
[ssDNA1][ssDNA2]

=
kf

kr
= e��G

�
s=RT :

We will use our understanding of oligonucleotide hybridization kinetics and thermodynamics
to build a plausible model for the self-assembly of DX molecules via the hybridization of their
sticky ends.

3.3.3 A Kinetic Model of DNA Self-Assembly

The self-assembly of two-dimensional lattices from a heterogeneous mix of N DX molecules is a
far more complicated system than the hybridization of two oligonucleotides. Rather than having
just three species to consider (ssDNA1, ssDNA2, and dsDNA), we now have an infinite number
of species (all possible aggregates). For each aggregate of n tiles with m available sites, there
are Nm association reactions and n dissociation reactions. Note that at every available site, there
is an association reaction for every possible monomer, regardless of whether the monomer is the
“correct” one or not; to understand when correct behavior can be expected, we must look closely at
the kinetics of all the reactions. The model we develop here can be seen as an extention of Erickson
(1980), which considers the self-assembly of an isotropic two-dimensional lattice consisting of a
single unit type. To model the kinetics of self-assembly, we make several simplifying assumptions:

1. Monomer concentrations will be held constant. Further, all monomer types will be held at

37We will ignore the activation energy in what follows, because we will see that the value of kf has no effect on the
behavior of the system except to set the scale of the time axis.

38The more negative �G�s is, the more heat is released upon association and the more favorable the reaction is.
Another way of looking at it is that if �G�s is very negative, a lot of heat must simultaneously converge upon a single
double helical DNA molecule in order to cause dissociation, and thus dissociation is rare. Also note that here, as
elsewhere, e�G

�

s
=RT has an “invisible” unit of M, so that kr is in units of 1/sec.

39The empirical value �Sinit = �6 cal/mol/K can be considered the entropic cost of aligning the two strands to
have the same orientation, and is called the initiation entropy.
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the same concentration. Primarily we make this assumption because the analysis is easier.
Later we show how the results found with the assumption can be used to understand the
more general case when the assumption is not true40.

2. Aggregates do not interact with each other; thus the only reactions to model are the addi-
tion of a monomer to an aggregate, and the dissociation of a monomer from an aggregate.
Potential drawbacks of this assumption will be discussed at the very end.

3. As in the hybridization of oligonucleotides, we assume that the forward rate constants for
all monomers are identical. In particular, the forward rate constants for correct and incorrect
additions are identical.

4. As in the hybridization of oligonucleotides, we assume that the reverse rate depends ex-
ponentially on the number of base-pair bonds which must be broken, and that mismatched
sticky ends make no base-pair bonds. This amounts to assuming that binding on multiple
edges is cooperative and that mismatched sticky ends do not affect the dissociation rate in
any way.

The model is governed by two free parameters, both of which are dimensionless free ener-
gies: Gmc > 0 measures the entropic cost of fixing the location of a monomer unit (and thus is
dependent upon monomer concentration), and Gse > 0 measures the free energy cost of break-
ing a single sticky-end bond; both are expressed with respect to the thermal energy RT . A third
parameter, the forward rate constant kf , is immaterial to the behavior of the system; it sets the
units for the time axis. The behavior of the system can be understood independently of the exact
correspondence of these abstract parameters to more realistic physical parameters; however, we
sketch the correspondence below.

For convenience, we lump location, orientation, and other entropic factors together into an
“effective concentration” of monomers, [D̂X]. In these units, [D̂X] = [DX]=20, k̂f = 20kf , and
the initiation entropy of �Sinit = �6 cal/mol/K = �R ln 20 disappears from the equations. Now
we write the concentration of each monomer as [D̂X] = e�Gmc . Thus the rate of associations of a
particular monomer type at a particular site on a particular aggregate is

rf = kf [DX] = k̂fe
�Gmc ;

measured in 1/sec. To determine the dissociation rate of a unit bound by b sticky-end bonds, each
of length s, we will use our assumption of cooperativity to justify using the free energy of a single
length-b � s oligonucleotide, �G�

b�s
. To write the dissociation rate in terms of Gse, we have:

rr;b = kfe
�G

�
b�s=RT = k̂fe

�bGse ;

also measured in 1/sec. Using the values for �H�s and �S�s determined for oligonucleotide hy-
bridization, sticky ends of length s would correspond to Gse = (4000K

T
� 11)s. If strength-1 edge

labels are encoded with sticky ends of length s (b = 1), then strength-2 edge labels will be en-
coded with sticky ends of length 2s (b = 2). If b is the sum of the strength of all a tile’s matching
edges, then the tile’s dissociation rate will be rr;b, and we will call b the number of (sticky-end)
bonds.

The various reactions possible in this model, which we call the Kinetic Assembly Model, are
illustrated for the Sierpinski Tiles in Figure 3.22.

40There is some intrinsic interest in the case where the assumption is true; for example, biological self-assembly
often occurs in the context where genetic circuitry controls the concentration of the monomers via a feedback loop.
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Figure 3.22: The rates of reactions for various tile association and dissociation steps in the Kinetic
Assembly Model. Note that all on-rates are identical, and that off-rates depend only upon the total
strength of correct edge matches. Mismatched edges and empty neighbors are treated identically.

We now wish to understand the behavior of the Kinetic Assembly Model as a function of it two
free parameters, Gmc (controlled by monomer concentration) and Gse (controlled by temperature
and by sticky-end length). Our naive prediction is that the ratioGmc

Gse
plays the role of T in the Tile

Assembly Model. If for small 0 < � < 1

T :
=
Gmc

Gse

= b� �;

then for a tile with b matches at a site,

rf

rr;b
= ebGse�Gmc = e�Gse > 1;

and the site will tend to be filled. But a tile with b� 1 matches will have

rf

rr;b
= e�(1��)Gse � 1;

and the tile will tend to dissociate. Because at equilibrium for the local site, the correct tile
is preferred over incorrect tiles by a factor of eGse , we expect that for large Gse, the Kinetic
Assembly Model will with high likeliness produce aggregates produced by the Tile Assembly
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Model. To confirm this expectation and delineate when it applies, we will have to understand
when local equilibrium is achieved, when the kinetics works in our favor, and when it works
against us.

We begin our detailed analysis by simulating the behavior of the Kinetic Assembly Model.
Because there are an infinite number of possible aggregate types, we cannot simply integrate
the rate equations to determine the time evolution of the concentration of each aggregate type.
However, since aggregates do not interact with each other, we can develop our simulation from
the perspective of an individual aggregate, starting with a chosen seed unit. Reaction rates now
become probability rates for a Poisson process: the association or dissociation of a monomer from
the current aggregate. In such a simulation, the probability of observing a particular aggregate at
simulated time t corresponds to the fractional concentration of that aggregate at time t according
to the full model.

The simulation proceeds as follows: A 2D array is used to store the arrangement of tiles in
the current aggregate. Initially the array contains all zeros to indicate empty sites, except for the
origin, which contains the seed tile. To determine the next event, the rates of all possible reactions
must be known. All m empty sites adjacent to the aggregate are counted; the net on rate is

kon =mk̂fe
�Gmc :

For all occupied sites (i; j) within the aggregate (except for the seed tile at the origin), the tile
types of its neighbors are noted and the total strength bij of all matching labels is calculated; the
net off rate is koff =

P
b koff;b where

koff;b =
X

ij s.t. bij=b
k̂fe
�bijGse :

Thus the net rate for events of any kind is kany = kon + koff , and the time until the next event
occurs, �t, is chosen according to the Boltzman distribution Pr(�t) = kanye

kany�t. Now, given
that an event has occurred, the probability that it is an on-event is kon=kany , in which case all
sites and all tile types are equally likely to be chosen; otherwise a dissociation has occurred, and
the probability that some site with b bonds dissociates is koff;b=koff , and again all such sites are
equally likely. Once the event is chosen and the array is updated, all rates must be recalculated to
determine the next event41.

3.3.4 Simulation Results

This section discusses simulations of the self-assembly of the Sierpinski Tiles using the Kinetic
Assembly Model. An example run is shown in Figure 3.23. Several features of this simulation run
warrant comment.

Shape: The growth front does not advance synchronously, but rather performs a biased random
walk, with the following restriction: because stable addition occurs only at concave corner
sites (slots) on the growth front, no sites can be more than one step ahead of or behind its
neighbors. The growth front is concave on average: the boundary tiles grow fastest because
their growth site is always available, while internal regions on the growth front grow slower
because stable addition can occur at only a fraction of sites at any given time.

41The actual computer code is optimized to remove redundant calculations, of course!
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Errors: For the most part, the Sierpinski Triangle is accurately reproduced. However, incorrect
tiles do appear. In the first three frames, incorrect tiles can be seen on the border of the
aggregate. These are inconsequential errors due to the equal on-rates of all tiles; they will
fall off immediately and cause no permanent errors. However, in the last frame we see an
incorrect tile which has been embedded within the aggregate; although it has a mismatch
with its predecessors, successive tile additions have been correct with respect to the error,
and now the erroneous tile has 3 matched edges. It has caused a permanent error, and the
misinformation spreads to all downstream cells in the computation.

Array Size: In the last two frames, the size of the aggregate has exceeded the size of the array
used in the simulation. Thus the Kinetic Assembly Model is not perfectly simulated; a
maximal size of aggregate is imposed. In the simulations below, this does not affect the
results in the region of interest, but it does explain the constant size (the maximum) found
during fast, random aggregation.

Figure 3.23: Growth of the Sierpinski Triangle. Greyscale indicates the tile type in the aggregate.
The simulation uses parameters Gse = 8 and T = 1:95, and the seed is a corner tile. These values
correspond to monomer concentration of 3 �Mand rf = 2 /sec, with sticky ends of length 5, and
T = 45�C; the frames show growth after 9, 18, 36, 63, 99, and 162 seconds.

To map out the parameter space of this model, simulations of the Sierpinski tiles were per-
formed for all 1 � Gmc; Gse � 30. Each simulation was run for 60=rf simulated seconds, thus
on average each unoccupied site could experience up to 60 on-events of each type; consequently,
the distribution of aggregate sizes is comparable across different parameter values. Figure 3.24
shows the results for (a) aggregates seeded by the corner tile and (b) aggregates seeded by a rule
tile, indicating both the resulting size of the aggregate and the number of errors42 in the aggregate.

42What’s actually calculated is the number of erroneous (mismatched) bonds, not the number of erroneous (incorrect
with respect to their neighbors) tiles; a single misplaced rule tile could be responsible for 4 such mismatched bonds.
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Figure 3.24: Phase diagrams for the Sierpinski tiles as computed by simulation: (a) aggregates
seeded by the corner tile, and (b) aggregates seeded by a rule tile. Each disc represents the results
of a single simulation on a28 � 28 array; the size of the disc represents thefinal size of the
aggregate, while the shading represents the number of errors as a fraction of total size. Each
run was given the same“unitless” time; thus whenGmc is high (corresponding to low monomer
concentration and thus slow assembly) more time is allowed so that error rates can be compared
easily. Solid black indicates zero errors. We see three regimes:T > 2 regime (no growth),
1 < T < 2 regime (includes error-free assembly nearT = 2), andT < 1 regime (uncontrolled
random growth to maximal size). Note that theT = 1 transition is smooth, and hence is not a true
phase boundary.

The lines showT = Gmc

Gse
= 2 and T = 1, which we will respectively call the melting

transition and the precipitation boundary. Above the melting transition, no aggregates grow from
either seed. Below the precipitation boundary, monomers associate freely to produce random
aggregates similar to those produces in the Tile Assembly Model atT = 1. The rate of growth
of random aggregates appears to fall off exponentially above the precipitation boundary; this is
indicated by the decreasing size of aggregates seeded by a rule tile in (b) and by the decreasing
error rate within aggregates seeded by the corner tile in (a). The result is that there is a large region
of parameter space where simultaneously (1) growth does occur, (2) errors are rare, and (3) growth
not initiated by the corner tile doesnot occur43. We call thiscontrolled growth.

We are particularly interested in the behaviour of the Kinetic Assembly Model near the melting
transition. Figure 3.25a shows the size and number of errors as a function ofGse, for Gmc = 16.
Upon passing the melting transition (Gse = 8), the size of aggregates seeded by the corner tile
grows dramatically, whereas aggregates seeded by the rule tile do not grow untilGse � 12,
at which point all aggregates are overwhelmed with errors. There are a few isolated instances
where aggregates seeded by the rule tile grow unusually large forGse near 8; in these cases, the
aggregate has incorporated a boundary or corner tile, which allows for further growth. Errors

However, at low error rates these two measures are equivalent.“100%” means 1 mismatched bond per tile; the error
rate therefore could exceed 100% for optimally misplaced tiles, but it does not do so in these simulations.

43Starting with a boundary tile as a seed, growth would occur, but would soon incorporate a corner tile and produce
a proper Sierpinksi triangle.
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Figure 3.25: (a) Simulation results for Gmc = 16 for aggregates seeded with the corner tile and a
rule tile. Note that for large Gse, where random aggregation is occurring, the aggregate grows to
fill the entire 28 � 28 array. (b) Errors, as a fraction of aggregate size, along the line Gmc = 16.
(c) Errors along the line T = 1:9, using a 38 � 38 array. Because log axes are used, data points
where the aggregate had zero errors are not shown.

appear to decrease exponentially as Gse ! 8 (Figure 3.25b). Figure 3.25c shows the behavior
along T = 1:9, where the system is sufficiently far below the melting transition to grow quickly,
and yet sufficiently close to the melting transition to get low error rates; again, errors appear to fall
exponentially with Gse.

In conclusion, it appears that with probability of error exponentially low in Gse, the kinetic
model at T = 2� � reproduces44 the Tile Assembly Model at T = 2.

44To account for the possibility that the Tile Assembly Model produces many distinct aggregates, we note that the
probability that a size-n aggregate produced by the Kinetic Assembly Model is not also produced by the Tile Assembly
Model is exponentially low.
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3.3.5 Analysis

Equilibrium error rates. We would like to understand why the Kinetic Assembly Model pro-
duces these results. We begin by analyzing the equilibrium concentrations for the reaction equa-
tions. Consider an aggregate A = T �A0 where the tile T has b bonds with A0. At equilibrium, the
principle of detailed balance tells us that45

[A]

[A0][T ]
=
kf

kr
thus

[A]

[A0]
=
kf [T ]

kr
=

rf

rr;b
= e�(Gmc�bGse):

Calculating equilibrium concentrations from any order of tile addition steps yields the same result,
so we can calculate the concentration of A = T1T2 � � � Tn from any sequence of additions for
producing A. Let bi be the number of bonds for the addition

TiTi+1 � � � Tn ���*)��� Ti + Ti+1 � � � Tn;

and let bA =
P

n�1
i=1 bi be the total strength of all matching edges in the aggregate. Then,

[A]

[T ]
=

[T1 � � � Tn]
[Tn]

=
[T1 � � � Tn]
[T2 � � � Tn]

[T2 � � � Tn]
[T3 � � � Tn]

� � � [Tn�1 � � � Tn]
[Tn]

= e�(Gmc�b1Gse)e�(Gmc�b2Gse) � � � e�(Gmc�bn�1Gse)

= e�((n�1)Gmc�bAGse) = e�((n�1)T �bA)Gse :

So we see that the concentrations of aggregates with bA

n�1
> T will grow with n, while the

concentrations of other aggregates will shrink46. We would like to make a prediction for error
rates based on the equilibrium assumption. To do this, we ignore the total concentration, and just
ask, “Of all material containing size n aggregates, what fraction is without errors?”

To compute this, we must know the value of bA for aggregates of interest. Note that for the
Sierpinski Tiles, any aggregate A0 produced by the Tile Assembly Model at T = 2 (i.e., an
aggregate with 0 errors) has exactly bA0

= 2(n � 1) because every tile addition step contributes
exactly 2 bonds. Furthermore, all other aggregates must have m :

= 2(n� 1)� bA > 0, a measure
of their suboptimality47. Aggregates with small m look like perfect Sierpinski aggregates, but
with a few internal errors. For size n aggregates, one perfect and one suboptimal by m,

[Am]

[A0]
=
e�((n�1)T �bAm )Gse

e�((n�1)T �bA0 )Gse

= e�mGse :

This at least partly explains the absence of aggregates seeded by rule tiles: any aggregate consist-
ing entirely of rule tiles must have m � 2

p
n � 2, and thus their equilibrium concentrations are

45Note that rf is constant because all monomer concentrations are equal and held constant, while rr;b depends on b

for the particular reaction.
46Recall that we are assuming equilibrium has been reached; taken literally, this is patently absurd when at equilib-

rium the concentrations of aggregates grows exponentially with their size. The implication is that in order to hold the
monomer concentrations constant, we must continually be providing new material into the system; this new material
flows through the system to create larger and larger aggregates.

47This can be seen by noting that bA � 2#(rule tiles+corner tiles)+2:5#(boundary tiles) where the deficit is
due to internal mismatches and to the “surface energy” of unmatched edges on the perimeter. An aggregate consisting
exclusively of n rule tiles will have perimeter at least 4

p
n, and thus bA � 2n�2

p
n and m � 2

p
n�2. An aggregate

with g+1 boundary and corner tiles will have 2 mismatched or unmatched edges terminating the boundary line and on
the perimeter at least g umatched edges; thus m � 0.
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exceedingly low48.
To compute the fraction of all size-n material which is errorless, we must know how many

aggregates of each kind there are. Let nm be the number of distinct size n aggregates of sub-
optimality m. Then a size n aggregate chosen from the equilibrium distribution is errorless with
probability

Preq(errorless aggregatejn) = n0[A0]P
1

m=0 nm[Am]
=

1P
1

m=0
nm

n0
e�mGse

:

For small m, we can estimate nm

n0
by noting that for each perfect aggregate of size n, we can make

� �2n
m

�
suboptimal aggregates by inducing errors at m internal edges, and completing the rest of

the pattern properly. Thus,

Preq(errorless aggregatejn) �
1P

1

m=0

�2n
m

�
e�mGse

=
1

(1 + e�Gse)2n
� 1� 2ne�Gse :

We can see that Preq(errorless aggregate) � 1
e

at n = 1
2
eGse . Since the Gse is determined

by the length of sticky ends, we see that by increasing sticky end length, we can exponentially
increase the size over which errorless computation can be expected to occur.

We could have arrived at the same conclusion more simply, but less rigorously, by assuming
that all tile additions occur in slots and the tile is chosen independently from the local equilibrium
distribution. (A site is in local equilibriumwhen the tiles (or their absence) at neighboring posi-
tions do not change, and all tile addition and tile dissociation reactions involving the site are in
equilibrium.) Then,

Preq(errorless aggregatejn) � Preq(errorless step)
n �

�
1

1 + 2e�Gse

�n
� 1� 2ne�Gse :

Note that this analysis, based on assumptions of equilibrium, predicts that error rates are unaf-
fected by Gmc. This was not the result of our simulation: error rates increase dramatically as Gmc

drops below the melting transition (i.e., as monomer concentration increases). Consequently, we
conclude that equilibrium is not achieved in these cases.

The kinetic trap. What prevents the system from achieving equilibrium? The intuition is that
if the growth of the crystal is faster than the time required to locally establish equilibrium at the
growth sites, tiles will become embedded and “ frozen” in the interior of the aggregate with an
out-of-equilibrium distribution.

How long does it take for a growth site to reach local equilibrium? Consider a growth site that
has just formed, and assume that the local context (neighboring tiles) does not change. Monomer
tiles of all kinds will sit down at the site, stay a while, and then leave, each according to its own
off-rate. If we look immediately after the growth site appears, the probability that the site is empty
is near 100%; however, if we wait a very long time before looking, we will find each tile, or an
empty site, with their equilibrium probabilities. If the local context doeschange by addition of
tiles surrounding the growth site, then the tile currently in place can be “ frozen” there effectively
permanently; even if it has one mismatched edge, three matches on its other edges can make its
off-rate very low. Although this is a very cartoonish picture, it is the basis for our analysis, since
the full system is too complex to treat rigorously.

48The concentration of a rule tile aggregate Ar is bounded by [Ar]=[T ] � e(T+�n�2pn)Gse , which has a minimum
of [Ar]=[T ] � e(T �1=�)Gse at ncritical = ��2. (Recall that T = 2� �.) The concentration at the critical size, which
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Figure 3.26: Model for kinetic trapping at a single growth site. (a) Simplified model for the filling
of a new site. In state E the site is empty; in state C a correct tile is present; in state A an almost
correct tile (with one mismatch) is present; and in state I a tile with several mismatches is present.
The sinks FC and FI represent frozen correct tiles and frozen incorrect tiles, respectively. (b)
The approach to equilibrium distribution at the site, assuming the site has not yet been frozen. The
vertical bar marks the expected time at which the site will be frozen.

Let’s look at the probability of a particular tile being present in the site as a function of time,
prior to the site being frozen. For the Sierpinski Tiles, four cases must be distinguished: (E) The
site is empty. The “off-rate” of emptiness is 7rf = 7kf e

�Gmc , since there are 7 tiles. (C) The
correct tile is in place. It’s off-rate is rr;2 = kfe

�2Gse . (A) One of two tiles with just one match,
and off-rate rr;1 = kfe

�Gse . (I) One of 4 tiles with no matches, and off-rate rr;0 = kf . Let pi(t)
be the probability that (i) is the case t seconds after the growth site has appeared, assuming the
site has not yet been frozen. The rate equations for the model in Figure 3.26a, excluding the sinks
FC and FI , can be written as

_p(t) =

2
6664
�7rf rr;2 rr;1 rr;0
rf �rr;2 0 0

2rf 0 �rr;1 0

4rf 0 0 �rr;0

3
7775

2
6664
pE(t)

pC(t)

pA(t)

pI(t)

3
7775
:
=Mp(t)

and thus, p(t) = eMtp(0) where p(0) = [1 0 0 0]T .

The behavior of p(t) is shown in Figure 3.26b. We want to know the probability that the
correct tile is in place when the site is frozen. During controlled growth, the rate of growth
is approximately r� = rf � rr;2; thus a given site will be frozen in mean time approximately
t� = 1=(rf � rr;2). With a decrease in Gmc (increased monomer concentration), rf increases, and
t� becomes earlier, leading to a more out-of-equilibrium frozen distribution.

By including sink states FC and FI into the model of Figure 3.26a, we can solve exactly for

becomes a kinetic barrier to the formation of larger aggregates (Erickson 1980), approaches zero as T ! 2.
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the frozen distribution. In this case the equations are

_p(t) =

2
66666664

�7rf rr;2 rr;1 rr;0 0 0

rf �rr;2 � r� 0 0 0 0

2rf 0 �rr;1 � r� 0 0 0

4rf 0 0 �rr;0 � r� 0 0

0 r� 0 0 0 0

0 0 r� r� 0 0

3
77777775

2
66666664

pE(t)

pC(t)

pA(t)

pI(t)

pFC(t)

pFI(t)

3
77777775
:
=Mp(t)

where p(0) = [1 0 0 0 0 0]T . The probability of the site being frozen with the correct tile,
pFC(1), can be easily computed from the steady-state of the related flow problem, where a unit
amount of material is pumped into state E and accumulates differentially in FC and FI:

_p(1) = [1 0 0 0 pFC(1) pFI(1)]T =Mp(1):

A little algebra gives the probability of an errorless step in terms of Gse and Gmc:

Prkin(errorless step)
:
= pFC(1) =

1
r�+rr;2

1
r�+rr;2 +

2
r�+rr;1 +

4
r�+rr;0

:

In this equation for errors due to kinetic trapping, in contrast to the equilibrium prediction, the
error rate depends upon bothGse and Gmc. The equation predicts error rates that are in qualitative
agreement with the simulations, as shown in Figure 3.27. In this analysis, it becomes clear that in
the limit as T ! 2 and thus r� ! 0,

Prkin(errorless step)! Preq(errorless step) =
1=rr;2

1=rr;2 + 2=rr;1 + 4=rr;0
� 1

1 + 2e�Gse

:

Thus equilibrium error rates are achieved near T = 2.
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Figure 3.27: (a) Log10 per-step error rates, estimated from simulations. (b) Log10 per-step error
rates, according to the kinetic trap theory.
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Speed of assembly. We have already observed that the forward rate rf = k̂fe
�Gmc depends

upon monomer concentration, and consequently, as our error rates improve with increased Gmc,
simultaneously the speed of computation drops dramatically. Now that we have an analytical
expression for Prkin(errorless step), based upon our simplified kinetic trap model, we can de-
termine the conditions which achieve a given target error rate " with the fastest rate of assembly
r� = rf � rr;2 :

1� " = Prkin(errorless step) �
1

1 + 2
r�+rr;2
r�+rr;1

and thus for small " and 2Gse > Gmc > Gse,

" � 2
r� + rr;2

r� + rr;1
� 2e�(Gmc�Gse) :

= 2e��G:

To achieve error rate ", the system can be run anywhere along a line parallel to T = 1 but displaced
by �G = ln2=" above it. Where along this line does self-assembly proceed most rapidly? We
find the maximum of

r� = k̂f (e
�Gmc � e�2Gse) = k̂f (e

��G�Gse � e�2Gse)

by differentiation with respect to dGse; optimal growth for constant �G occurs at

Gse = �G+ ln2 = ln
4

"
and Gmc = 2�G+ ln2 = ln

8

"2
:

The optimal growth rate r� = k̂f

16
"2 � 0:75� 106 "2 =sec occurs on the line Gmc = 2Gse � ln 2.

Thus it appears that we have a hard physical limit on what error rates can be achieved by DNA
self-assembly within reasonable time limits. If we wish to have a net forward rate of 1 tile added
per second, then the best we can achieve is an error rate of 1/1000; while if we were willing to
wait half an hour for each addition, we could get an error rate of 3 � 10�5, and we could grow
some perfect 200� 200 aggregates over the course of a week.

3.3.6 Discussion

The above simulations and theoretical arguments both confirm that in the Kinetic Assembly
Model, aggregates can grow with finite speed and arbitrarily low per-site error rates for large
Gse and T = 2 � �. We should be careful that the analysis does not depend upon the particulari-
ties of the Sierpinski Tiles. It can easily be verified that if the rule tiles use k labels (instead of the
2 labels used in the Sierpinski Tiles) and there are a total of N tiles (instead of the 7 Sierpinski
Tiles) then the analysis is unchanged except that

Preq(errorless aggregatejn) � 1� 2(k � 1)ne�Gse

and

Prkin(errorless step) =

1
r�+rr;2

1
r�+rr;2 +

2(k�1)
r�+rr;1 +

N�1�2(k�1)
r�+rr;0

� 1� 2(k � 1)e�(Gmc�Gse)

and the optimal growth rate now occurs displaced �G =
ln 2(k�1)

"
above T = 1. We now loosely

discuss other aspects of the model.
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Figure 3.28: Analysis of the phase diagram for 2D self-assembly. Lines mark the melting transi-
tion T = 2, the precipitation boundary T = 1, a line of constant error rate Gmc = Gse + �G,
and the line on which optimal growth rates occur Gmc = 2Gse � ln 2.

Energy use. Reversible computers have the potential to compute using arbitrarily little energy
per step, because no information is erased during the computation itself (Landauer 1961; Bennett
1973). The system described here uses only fully physically reversible reactions, and thus is
a candidate for low-energy computation; although non-reversible 1D cellular automata may be
simulated, the 2D pattern records a history of the entire computation, and thus no information is
lost at any step. During controlled growth at T = 2� �, the amount of energy used by the system
equals the free energy lost as heat on each step:

��G� = �(Gmc � 2Gse)RT = �GseRT:

For any fixed Gse, error rates and energy use are simultaneously minimized as the melting transi-
tion is approached.

An entropic ratchet. What happens at T = 2 exactly? We already know that at T = 2, opti-
mal equilibrium error rates are achieved and no energy is used to power each step; the probability
of going backwards is identical to the probability of going forwards. In a 1D reversible compu-
tation, like that imagined by Bennett (1973), the random walk would lead to no net computation
performed. However, in our 2D system, the number of possible errorless size n aggregates grows
with n. Thus, as the state-space is explored at equilibrium, it will be entropically driven to perform
computation! This oddity deserves further attention to see whether it would still be present in a
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more realistic model.
Experimentally accessibly regimes. We have already developed the relation between our

abstract parameters Gmc and Gse and relevant parameters of a real system, such as monomer
concentration and free-energies of hybridization; Figure 3.23 showed that low error rates can be
achieved for realistic parameters49, given our assumptions. We can make our arguments more
realistic by considering what happens as a solution of monomers is slowly annealed from a high
temperature to a lower temperature. At any moment in time, we plot the current reaction conditions
as a point on Figure 3.24 to determine the rate of growth and per-step error rate. Suppose initially
Gmc = 12 and Gse = 5; here, above the melting transition, the monomers are all free in solution.
As the temperature decreases, Gse will increase, and our point follows a horizontal trajectory
straight toward T = 2. Just below the melting transition, the aggregate will grow (with optimal
error rates for the current Gse). Consequently, the monomer concentration will drop, and Gmc will
increase, bringing the system back toward T = 2. So long as the temperature drops slowly enough,
the system will stay just below the melting transition, and our point will follow a trajectory parallel
to T = 2. Thus, by annealling, the self-assembly process will automatically maintain itself in the
regime where errors are most infrequent. Optimal annealing schedules are an issue for future
investigation, and to be of practical use they will have to take account of the non-idealities of the
system.

Imperfections of a real system. The careful reader will immediately observe that the concen-
trations of different tiles will be depleted at different rates, thus breaking our original assumption
that all tiles are present at equal concentrations. This will introduce additional factors into the error
analysis. There are many other ways in which real systems will deviate from the Kinetic Assem-
bly Model. Free energies of hybridization for different sticky-end sequences cannot be perfectly
matched, so the melting transitions for different tiles will differ slightly. Worse yet, imperfectly or
partially matched sticky-ends may contribute to the free energey of interaction between tiles with
mismatched edges, in violation of the model’s assumption that only correctly edges contribute to
�G�

b�s
. It remains to be determined how important these factors are.

Cooperativity of binding. The Kinetic Assembly Model makes a strong assumption that two
binding sites on the same tile will act cooperatively when binding to an aggregate. Specifically, it is
claimed that �G�2 bonds = 2�G�1 bond. There are three points to make. First, the rigidity of double
crossover molecules, as demonstrated by Li et al. (1996), suggests that the binding events should
act together – in particular, the slot-filling event during proper growth should be cooperative. This
intuition can be bolstered by estimating the “effective” local concentration of the remaining sticky
end after one end has bound – giving an estimate for the additional “ loop entropy” (Cantor and
Schimmel 1980, p. 1205) required to close the second end in the slot. Since double-stranded
DNA has a persistence length of approximately 130 nt (Cantor and Schimmel 1980, p. 1033) and
DX molecules span roughly 40 nt from end to end, the physical distance between the sticky ends
may fluctuate from 12 to 14 nm, thus exploring a volume of � 4000 nm3, with the free sticky
end assuming perhaps a range of 30� � 30� orientations at each position. This corresponds to an
effective concentration of

Ceff =
1 sticky end

4000 nm3 � 900 deg2
(1024 nm3 � 3602 deg2) /liter
6� 1023 sticky ends/mol

= 60mM

and thus a loop entropy �Sloop = R lnCeff = �5:6 cal/mol/K. This value is comparable with the
initiation entropy of �Sinit = �6 cal/mol/K. At 27�C it increases the free energy of interaction by

49Gmc = 30 is an example of an unrealistic parameter: at 2 pM, rf = 2 � 10
�5 /sec and monomer addition will

occur only twice per day.
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1:68 kcal/mol, which roughly offsets the contribution of a single base-pair bond (�1:4 kcal/mol).
The deviation from perfect cooperativity should be negligible, according to this estimation. Exper-
imental studies should be able to measure the extent of cooperativity; the preliminary experiment
reported in Winfree et al. (in press) argues qualitatively for cooperativity in an analogous DNA
system.

Second, it is possible that in addition to free energy due to sticky end hybridization and due to
loop entropy, there could be enthalpic contributions to loop closure, for example, if the double he-
lix must be twisted, stretched, or otherwise deformed in order to fit into the slot. Double crossover
molecule tiles can be designed with the intention of minimizing these anticooperative effects, but it
remains to be seen how well that works. It may also be possible to exploitanticooperative effects
to enforce negative interactionsfor mismatching edge labels. This would require using differ-
ently sized double crossover molecules, for example by changing the lengths of the four arms, so
that geometric mismatches are present in addition to sticky-end sequence mismatches. It may be
possible this way to implement a tile assembly model with negative weights.

Third, just as the initiation entropy was folded into the abstract Gmc and Gse parameters, a
loop entropy or mild anticooperative adjustment could be taken up by adjusting Gmc and Gse to
reproduce the on-rates and off-rates for the most important double-match and single-match cases.
The simple model would be inaccurate for the off-rates of tiles with more than 2 bonds, but as
these tiles seldom dissociate for parameters of interest, this inaccuracy is irrelevant.

Alternative reaction mechanisms. The Kinetic Assembly Model assumes that the growth
of aggregates occurs by addition of single monomers only, and thus that there are no interactions
between aggregates. Reaction mechanisms would not affect the equilibrium error rate predictions,
but Rothemund (personal communication) has emphasized that dimer-dimer pathways, or other in-
teractions between aggregates, could be very important for the kinetics of self-assembly, and thus
their inclusion could affect kinetic trapping in theory and in practice. Indeed, Malkin et al. (1995)
have directly observed, by AFM, crystal growth by sedimentation of small three-dimensional nu-
clei.

It is also possible – perhaps I should say probably – that alternative reaction mechanisms are
present for creating non-planar structures, such as tubes or random three dimensional networks.
Indeed, experimental studies attempting to create 2D lattices of DX molecules (Winfree et al.
1998) found, for example, occasional unexpected rod-like structures in addition to the expected
planar 2D crystals.

3.3.7 Conclusions

We have used a pair of simple kinetic models to understand error rates in the self-assembly process
for algorithmically-defined 2D polymerization. Our results lend credence, in lieu of a full exper-
imental demonstration, to proposals (Winfree 1996b; Winfree et al. in press) for computation by
self-assembly of DNA: we have found that 2D self-assembly can theoretically support computa-
tion with arbitrarily low error rates. This answers a question raised by Reif (in press), who was
concerned that, as in the T = 1 example of Figure 3.19, an unfortunate sequence of tile additions
could lead to blockageswhere no tile can fit into an empty site without a mismatch. We find that
blockages are not a problem in our model, but the thermodynamics of DNA hybridization give rise
to an intrinsic per-step error rate. Large computations require low concentrations and hence very
slow growth rates. This is the algorithmic equivalent of the fact, in conventional crystallization,
that large perfect crystals form under conditions of slow growth near the solubility line (Kam et al.
1980).
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A few worked-out examples for the case of the Sierpinski Tiles are illustrative. From our
investigations of kinetic trapping, we found that there is an optimal growth rate r� for every target
error rate ". At this growth rate " = 4e�Gse , [DX] = 2:5"2 M, and r� = 0:75 � 106"2 /sec, where
0 < Gse = (4000K

T
� 11)s � ��G�=RT for the hybridization of a single sticky end of length

s. Assemblies of nmax

:
= 1=" tiles would be expected to contain one error on average; there is an

inverse relationship between the rate of assembly and the expected size of error-free aggregates.
For example, sticky ends of length 5 at room temperature give Gse = 12 and nmax = 40000,
but requires a concentration of [DX] = 1:5 nM and thus a rate r� = 1:6 /hour. The same system
could be run at 17�C, where Gse = 14, [DX] = 30 pM, nmax = 300000, and r� = 0:71 /day;
or at 45�C, where Gse = 8, [DX] = 4:5�M, nmax = 750, and r� = 1:35 /sec. Under the latter
conditions, a non-deterministic set of DNA tiles in a reasonable volume (1ml) could give rise to
1013 distinct 300-tile aggregates in under a minute, that is, 1014 operations per second. This would
be sufficient for solving a simple 40-variable SAT problem by subsequent ligation and PCR to find
the answer-containing strand in the “good” aggregate. However, for this application an additional
source of errors would be false-positives due to non-answer aggregates which, because of an error
during assembly or during PCR, appear to be “good;” an additional error analysis is required in
this case.

What are we to do if we want faster and less error-prone computation? Reif (in press) suggests
using a combination of autonomous self-assembly and step-wise processing; his ingenious con-
structions perform a computation in a series of self-assembly steps each of which only requires the
formation of small aggregates. Because the number of steps is kept low (for example, computing
a circuit of size s requires O(log s) self-assembly steps), there is promise for asymptotically better
error rates; however, a detailed analysis remains to be done, and may be difficult due to the lack of
experimental evidence for the complex DNA structures and self-assembly reactions he proposes.

Is it possible to get faster and less error-prone computation in an autonomous self-assembly
system? Biology makes use of an energy source to improve error rates by “proofreading” mecha-
nisms (Kornberg and Baker 1991). Kinetic proofreading mechanisms can be fairly simple (Hop-
field 1974); it would be interesting if such a mechanism could be devised to mediate the self-
assembly of double-crossover molecules. Alternatively, one can accept the intrinsic error rate and
try to devise error-correcting algorithmswhich could improve the overall error rate exponentially
with a slowdown only linear in the number of extra tile types.
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Chapter 4 Experiments with DNA Self-Assembly

4.1 A Competition Experiment: Slot-Filling

Abstract1 In this section we examine the question of whether the two bind-
ing domains in the input region of a rule molecule act cooperatively during a
slot-filling reaction. A well-defined DNA system has been designed to model
a single slot analogous to the one in a growing lattice. The system consists
of three logical pieces: ABC, D, and D’ . D and D’ model rule molecules which
match either both or just one of the slot’s two sticky ends. Thus, by competing
D again D’ , we can determine the extent of the preference for D over D’ for fill-
ing the slot. By analyzing ligation products, wherein a closed circular species
indicates the correct insertion of D in the slot, we observed that D was pre-
ferred even in the presence of a 64-fold excess of D’ . This is strong suggestive
evidence that the slot-filling reaction in lattice formation is also cooperative,
as is required for our model of computation by self-assembly.

The theoretical studies of previous chapters only point to the possibility of algorithmically-
patterned lattices of DNA. There are two major issues to be investigated experimentally. The first
is whether homogeneous lattices will form; i.e., whether the geometric structure itself will self-
assemble. The second issue is whether, in the presence of multiple units in solution, the logically
correct unit will hybridize in each slot. This competitive process for filling each slot is essential
for computation, as a single error can propagate throughout the entire computation. Ultimately,
error rates will determine the size of lattice in which reliable computation may be performed.

We have begun an investigation of the second issue. We first build a model molecular complex,
called ABC, which contains a single slot and no other sticky ends. ABC is composed of two
double crossover molecules, A and C, and a duplex linker B. ABC is created by ligating eight
oligonucleotides; the final structure contains four hybridized strands. Rather than test the assembly
of a double crossover unit into ABC’s slot, we model the unit by a linear duplex “ linker” , called D.
When ABC is properly hybridized to D, we call the complex ABCD. Completely ligated, ABCD is
a complex catenane with four interlocked circles. To test the specificity of the hybridization, we
also have a mismatched linker D’ , which is perfectly complementary to only one of the sticky ends
in the slot. We expect that ABCD’ cannot be completely ligated, due to the mismatch, and hence
ABCD’ does not form a catenane. These molecular complexes are diagramed in Figure 4.1.

Experimentally, we must establish that the double crossover molecules A and C form properly
upon annealing their component strands. As developed in Fu and Seeman (1993), where the details
of hybridization were probed by more extensive structural characterization, a good indication of
proper association is a single band of mobility in a non-denaturing gel appropriate for the topology
and molecular weight. The ligation products ABC, ABCD, and ABCD’ (by which we mean whatever

1Results in this section also appear in Winfree et al. (in press), and include joint work with Xiaoping Yang and
Nadrian C. Seeman, as described in Chapter 1. Thanks to John Abelson for generously providing laboratory facilities
at Caltech for some of the experiments reported here.
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A1 (88 nt) = TAATGTGCCTGACCGCCTTACTTTTGTAAGGCGGTCACCGAATTCCGACTTTTGTCGGAATTCGGACGCCTAACGTGGACACCGCGAC

A2 (52 nt) = GTAAGCTTCCTGTCCACGTTAGGCGTGGCACATTAGTCGCGGACTTAGACAA

A3 (32 nt) = GGATGGTTGTCTAAGTGGAAGCTTACCGCATC

B1 (64 nt) = CCATCCAGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGGCAGTAC

B2 (52 nt) = CCGATTCAATCAAGGTTTACACTACCGTGAGTTACGCAGACGTGTCAACGCT

C1 (80 nt) = TGCATCTGGACCTCGAGACTTTTGTCTCGAGGTGGTTCGCCGCTTTTGCGGCGAACCTGAACACGAACGTGGTGGATCAC

C2 (52 nt) = GAGTCGACGGACCACGTTCGTGTTCACCAGATGCAGTGATCCTGCATATGAC

C3 (32 nt) = CTGAGCGTCATATGCACCGTCGACTCGTACTG

D1 (64 nt) = GCTCAGCCGTGCTAATCCAACTCGGTACCTACAGATACGATGGACTGGTTAGATAGGTGATGCG

D2 (52 nt) = ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG

D1' (64 nt) = GCTCAGCCGTGCTAATCCAACTCCTGCAGTACAGATACGATGGACTGGTTAGATAGGTCAACAG

D2' (52 nt) = ACCTATCTAACCAGTCCATCGTATCTGTACTGCAGGAGTTGGATTAGCACGG

Complex ABC: A B C

TTGTCGGAATTCGG-ACGCCTAAG CACCTGT-CCTTCGAATG CAGTATACGT-CCTAGTG TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC GTGGACA GGAAGCTTAC-CGCATC CTGAGC-GTCATATGCA GGATCAC ACGTAGACC TGGAGCTCTGTT

TTGTAAGGCGGTCA GGCACATTA CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT AGCACAAGT-CCAAGCGGCGTT

Complex ABCD: A D/B C

TTGTCGGAATTCGG-ACGCCTAAG CACCTGT-CCTTCGAATG GCGTAG-TGGATAGATTGGTCAGGTAGCATAGACATCCATGGCTCAACCTAATCGTGCC-GACTCG CAGTATACGT-CCTAGTG TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC GTGGACA GGAAGCTTAC-CGCATC ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG CTGAGC-GTCATATGCA GGATCAC ACGTAGACC TGGAGCTCTGTT

TTGTAAGGCGGTCA GGCACATTA CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT AGCACAAGT-CCAAGCGGCGTT
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Figure 4.1: Sequences and Structures for ABCD. Sequences are written 5’ to 3’ . 3’ ends are
denoted by arrows in the diagrams, and strand labels are near 5’ ends. Lengths are measured in
nucleotides. Above, sequence details are given along with schematic representations of ABC and
ABCD (not ligated). Below, more geometric detail is sketched for A, B, C, D, and ABCD (ligated).
Diagrams illustrate intended structures only.

it is we get when we intend to make structures ABC, ABCD, and ABCD’ respectively) are examined
both in non-denaturing and denaturing gels; in the former we are looking for a single band of
approximately the correct apparent molecular weight, while in the latter we are looking for linear
strands of the lengths predicted for ligation. Ligation of double crossover molecules has previously
been shown to be well-behaved (Li et al. 1996). Topologically closed structures, such as ABCD,
can be assayed by treating with an exonuclease (Ma et al. 1986). Although none of these tests
is absolutely rigorous, together they may give us confidence that the reactions are proceeding as
predicted.

4.1.1 Materials and Methods

Sequence Design.The twelve strands required for A, B, C, D, and D’ were designed by applying
the principles of sequence symmetry minimization (Seeman 1990), where the design process en-
sures that there are no complementary regions between strands, except as desired. In short, each
double crossover molecule is designed by creating sequences appropriate for two asymmetric Hol-
liday junctions, then juxtaposing these sequences as appropriate for a four-stranded DAO, adding
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hairpin sequences and re-phasing A1 and C1 to put the nick in the central region of the DAO. A1’s
hairpin regions are longer than C1’s to allow A1 and C1 to be distinguished on gels. The lengths of
the linkers B and D were chosen such that both DAO units should be nearly coplanar according to
an estimated 10.5 base pairs per double helical full turn. Exact sequences are given in Figure 4.1.

Synthesis and Purification of DNA.All strands were synthesized on an Applied Biosystems
380B automatic DNA synthesizer using routine phosphoramidite procedures (Caruthers 1985).
DNA strands were purified by denaturing polyacrylamide gel electrophoresis. DNA concentra-
tions were estimated by OD260. All strands were phosphorylated by T4 Polynucleotide Kinase
(U.S. Biochemical or Promega), followed by phenol extraction and ethanol precipitation. DNA
was not radiolabeled, with the exception of the DNA used for Figure 4.6, for which 10% of strands
were phosphorylated with 32-ATP and mixed with 90% non-radiolabelled strands.

Formation of Hydrogen-Bonded Complexes.Complexes A, B, C, D, and subportions thereof
were formed by mixing stoichiometric quantities of each strand at concentrations near 1 �M in 1x
USB T4 DNA Ligase buffer (U.S. Biochemical: 66 mM Tris�HCl (pH 7.6), 6.6 mM MgCl2, 10
mM DTT, 66 �M ATP; or Promega: 30 mM Tris�HCl (pH 7.8), 10 mM MgCl2, 10 mM DTT, 500
�M ATP). These solutions were annealed for two hours from 80�C down to room temperature.

Formation of Covalently Bonded Complexes.Complexes AB, BC, ABC, ABCD, and ABCD’
were formed by mixing stoichiometric quantities of annealed A, B, C, and D’ , followed by D after
20 minutes. Up to 50 units of T4 DNA Ligase (U.S. Biochemical or Promega) were added and
solutions were incubated in a 16�C water bath for 2 or 8 hours. One sample of ABCD was further
treated by adding 1

10

th
volume 10x USB Exonuclease III buffer (U.S. Biochemical) and 100 units

Exonuclease III (U.S. Biochemical), incubated at 37�C for 1 hour. Prior to being loaded in gels,
solutions for gels (a) and (b) were heated to 80�C and again annealed to room temperature, to
denature proteins and re-form hydrogen-bonded complexes. For gels (c), ligation was followed by
phenol extraction and ethanol precipitation, then samples were heated to 90�C for 5 minutes prior
to being loaded.

Denaturing Polyacrylamide Gels.Denaturing gels contain 8.3 M urea and 8% acrylamide
(19:1 acrylamide:bisacrylamide). The running buffer is TBE (89 mM Tris�HCl (pH 8.0), 89 mM
boric acid, 2 mM EDTA). The sample buffer contains 0.1% bromphenol blue and xylene cyanol
FF tracking dyes in 80% formamide with 10 mM EDTA. Samples are heated at 80�C for 5 minutes
immediately prior to loading. Gels are run at approximately 60 V/cm and 35 Watts, then soaked
in StainsAll dye and digitized by DeskScan II on an Apple Macintosh.

Non-denaturing Polyacrylamide Gels.Non-denaturing gels contain 12.5 mM Mg++ and 8%
acrylamide (19:1 acrylamide:bisacrylamide), 0.75 mm thick. The running buffer is TAE/Mg++

(40 mM Tris�HCl (pH 8.0), 20 mM acetic acid, 2 mM EDTA, 12.5 mM magnesium acetate).
The loading buffer contains 0.02% bromphenol blue and xylene cyanol FF tracking dyes and 5%
glycerol in ligation buffer. Gels are run at approximately 16 V/cm and 10 Watts at 4�C , then
soaked in StainsAll dye and digitized by DeskScan II on an Apple Macintosh.

4.1.2 Results

Formation of Complexes.
The first question is whether the individual duplexes and double-crossover molecules A, B, C,

and D will form from their component strands. Figure 4.2 shows a non-denaturing “ formation gel”
for double-crossover molecules A and C. Each lane contains a different subset of strands. Each
lane shows a single prominent band, indicating that the strands form a specific complex. Faint
bands are presumably the result of poor stoichimetry. For example, a deficit of A3 in lane 5 could
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explain the minor production of A12 in this lane. We estimate that the bands for A and C in lanes
3 and 8 contain over 90% of the material; however, this is not a quantitative measurement. The
mobilities of the partial complexes for A are as would be expected for double-stranded DNA of the
same molecular weight: A23 < A12 < A123. Lane 9 contains an anomolous major band: rather
than seeing C12 at the 132nt level, we see a major and minor band above the 200 nt level. We
now interpret this as a C12C12 dimer bound together at the self-complementary Nde I and Sal
I restriction sites, as shown in Figure 4.3. In the additional presence of C3, these site are double
stranded and the dimer is not produced. Only one of the arms of A has a restriction site, which
explains why a A12A12 dimer was not also observed.

1 2 3 4 5 6 7 8 109

A12
A123 A123

A23 C123
C23

C123
C12

M
M

200 nt

400 nt

600 nt

84: A23, C23
132: C12
140: A12
164: C
172: A

264? C12C12

7% Non-denaturing PAGE

Figure 4.2: Non-denaturing gel. Lanes 1 and 10: 100 base-pair double-stranded ladder. Lane 2:
A12 (140 nucleotides). Lanes 3 and 5: A123 (172 nucleotides). Two preparations of strand A1
were used, which apparently have different stoichiometry. Lane 4: A23 (84 nucleotides). Lanes 6
and 8: C123 (164 nucleotides). Two preparations of strand C1 were used, which apparently have
different stoichiometry. Lane 7: C23 (84 nucleotides). Lane 9: C12 (132 nucleotides). The band
at � 240 nt is presumably the dimer C12C12.

Figure 4.4 shows several stages in the formation of ABCD. On the non-denaturing gel, the
duplexes and double crossover molecules A, B, C, and D form clean bands (a, lanes 1-4) which
migrate with approximately the same mobility as equivalent molecular weight duplex DNA. Lig-
ation products AB and BC also show clean bands (a, lanes 9-10). Ligation product ABC appears as
the major band in its lane (a, lane 8); another band appears at the level of AB and BC indicating
incomplete ligation. Ligation product ABCD also appears, we believe, as the major band in its lane
(a, lanes 7 and 5); a slower unidentified band also appears. After exonuclease treatment, the major
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                                   CA                         

                                   GA                          

   TTGTCTCGAGGT CCAGATGCA  CACTAGG   GTATACGT  GGATCAC  ACGTAGACC TGGAGCTCTGTT 
   TTCAGAGCTCCA GGTCTACGT  GTGATCC TGCATATG    CCTAGTG  TGCATCTGG ACCTCGAGACTT 

   TTCGCCGCTTGG ACTTGTGCT  ACGTGGT   GTCGACGG  TGGTGCA  TCGTGTTCA GGTTCGCCGCTT 
   TTGCGGCGAACC TGAACACGA  TGCACCA GGCAGCTG    ACCACGT  AGCACAAGT CCAAGCGGCGTT 

                                           AC           

                                           AG 

                      

    

    TTGTCTCGAGGT            CACTAGG 
    TTCAGAGCTCCA GGTCTACGT  
                          c1 

    TTGCGGCGAACC TGAACACGA 
    TTCGCCGCTTGG            ACGTGGT 

                                             c2 

                 CCAGATGCA 

                 ACTTGTGCT 

                            GTGATCC TGCATATGAC  

                            TGCACCA GGCAGCTGAG

   

 

    TTCGCCGCTTGG ACTTGTGCT  ACGTGGT                 

                                             c2 

                         c1 

                                    c2 

                                                        c1 

                                               GGATCAC  ACGTAGACC TGGAGCTCTGTT 

    TTGCGGCGAACC TGAACACGA  TGCACCA GGCAGCTGAG 

                                               TGGTGCA  TCGTGTTCA GGTTCGCCGCTT 
                                    GAGTCGACGG ACCACGT  AGCACAAGT CCAAGCGGCGTT

                                    CAGTATACGT CCTAGTG  TGCATCTGG ACCTCGAGACTT

    TTCAGAGCTCCA GGTCTACGT  GTGATCC TGCATATGAC  
    TTGTCTCGAGGT CCAGATGCA  CACTAGG                    

Nde I

Sal I

Figure 4.3: Proposed structure causing the anomolous band in Figure 4.2 lane 9. First C1 and C2
hybridize to form C12, then two C12 molecules bind at self-complementary restriction enzyme
sites.

band of ligation product ABCD is still apparent, though diminished (a, lane 6).

On the denaturing gel, we obtain further evidence of ligation activity by observing the lengths
of newly created oligonucleotides. Lanes 1-4 can be used as markers for the lengths of most of
the original oligonucleotides: A1 (88), A2 (52), B1 (64), B2 (52), C1 (80), C2 (52), D1 (64), D2
(52). A3 and C3, both 32 nucleotides, ran off the gel. Lane 10, product AB, shows the expected
formation of A2B1 (116) and B2A3 (84); lane 9, product BC, likewise shows the formation of
B1C2 (116) and C3B2 (84); and lane 8, product ABC, shows the expected formation of A2B1C2
(168) and C3B2A3 (116). Lanes 5 and 7, product ABCD, contain only three significant bands: A1
(88), C1 (80), and a band which migrates slower than a 2000 nucleotide strand, according to the
marker (lane 11). This slow band is exonuclease-resistant (lane 6). We therefore conclude that the
band contains the catenane A2B1C2D1:A3D2C3B2; i.e., ABCD minus the A1 and C1 loops, which
apparently were not ligated. Double crossover molecules with two nicks have been shown to be
stable (Zhang and Seeman 1994a), suggesting that the nicks in A1 and C1 should not significantly
affect the formation or stability of A or C.

We wished further confirmation of the idenity of the bands. It is possible to determine exactly
which set of oligonucleotides is present in each band by “differential labelling.” Here, we run a set
of nearly identical experiments, the only difference being which oligonucleotide has been phos-
phorylated with 32P. On the gel, only products incorporating the radiolabelled oligonucleotide will
be visisble. Thus, for each band, we can simply read off the lanes in which it appears to determine
which oligonucleotides are involved in the complex. If more than one complex co-migrate, the
analysis gets more difficult. This is indeed what happens in the gels shown in Figure 4.5: on the
8% gel, the outer circle and the outer:inner complex comigrate. Change in mobility with change
in polyacrylamide density distinguishes different topological species, allowing us to separate the
outer circle and outer:inner complex on a 5% gel. However, at this percentage, the inner circle
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B1C2, A2B1, D1C2, A2D1
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Figure 4.4: (a) Denaturing gel electrophoresis. Lane 1: A (172 nucleotides). Lane 2: B (116 nu-
cleotides). Lane 3: C (164 nucleotides). Lane 4: D (116 nucleotides). Lane 5: Product ABCD with
ligase. ABCD contains 568 nucleotides. Lane 6: Product ABCDwith ligase and exonuclease. Lane
7: product ABCD with ligase. Lane 8: Product ABC with ligase. ABC contains 452 nucleotides.
Lane 9: Product BC with ligase. BC contains 280 nucleotides. Lane 10: Product AB with lig-
ase. AB contains 288 nucleotides. Lane 11: 100 base-pair double-stranded ladder. Numbers at
right indicate estimated positions for expected products, consistent with the marker lane. (b) Non-
denaturing gel electrophoresis: Lane 1: A (172 nucleotides). Lane 2: B (116 nucleotides). Lane 3:
C (164 nucleotides). Lane 4: D (116 nucleotides). Lane 5: Product ABCD with ligase. ABCD con-
tains 568 nucleotides. Lane 6: Product ABCD with ligase and exonuclease. Lane 7: product ABCD
with ligase. Lane 8: Product ABC with ligase. ABC contains 452 nucleotides. Lane 9: Product
BC with ligase. BC contains 280 nucleotides. Lane 10: Product AB with ligase. AB contains 288
nucleotides. Lane 11: 100 base-pair double-stranded ladder. Numbers at right indicate estimated
positions for expected products, consistent with the marker lane.

and the 232-mer linear strand comigrate! Note that ligase was not as efficient in this experiment
as it was in the previous experiment: the ABCD lane contains many partial products, indicating
incomplete ligation of nicks in the ABCD complex, or poor stoichiometry so that many ABCD
complexes were lacking one or more strand. This is turns out to be convenient for interpretting the
next experiment, where ligation was again incomplete.

Specificity of Reaction.

Figure 4.6 shows the results of a preliminary experiment investigating the effectiveness of
D vs D’ in filling the slot created by ABC. Lane 13 contains ABC, and thus has primary bands for
A2B1C2 (168) and C3B2A3 (116). Lanes 2 and 12 show ligation of ABCD in 1:1:1:1 stoichiometry.
The ligation apparently was not as complete as in 4.4, as several bands of “partial products” are
observed. The fastest band is appropriate for linear A3D2C3B2 (168) and cyclical permutations;
the next band is appropriate for linear B1C2D1 or D1A2B1 (180); the next major band is appropriate
for A2B1C2D1 (232) and cyclical permutations. The band below c is known from other gels
(not shown) to be exonuclease-resistant, and the two cyclic molecule bands are thought to be
an indicator of the formation of ABCD. Lanes 1 and 10 show ligation of ABC with respectively an
equimolar amount or a 20-fold excess of D’ . We again see the linear bands of lengths 168, 180, and
232, while bands at 136 (D2C3B2) and 116 (C3B2A3 and A3D2C3) become significant. Critically,
the slow circular products are missing, suggesting that D’ was only ligated on the side where it



84

C1
A1

D2 B3
C3

D1
C2A3

B1
A2

ABCD

4 7 8 121 2 3 65 9 10 11

A3B2, B2C3, C3D2, D2A3
A1

C1

88 nt

168 nt

A1
D2 B3

C3 A3
C1

C2 A2
B1D1

1 2 3 4 109875 6

136 nt

136 nt

116 nt

88 nt

168 nt

232 nt
180 nt

5% Denaturing PAGE8% Denaturing PAGE

80 nt
84 nt

116 ntB1C2, A2B1, D1C2, A2D1
A3B2C3, A3D2C3

B2C3D2, D2A3B2

A2B1C2, C2D1A2,A3B2C3D2

232 ntA2B1C2D1
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Figure 4.5: Denaturing gel electrophoresis with radiolabelled strands. All lanes contain ABCD, but
in each lane only one strand was radiolabelled. (Note that the gels were improperly dried, leading
to “smearing” after the gel was run.)

168 ntA2B1C2, C2D1A2,A3B2C3D2
180 ntB1C2D1, D1A2B1
232 ntA2B1C2D1

136 ntB2C3D2, D2A3B2
116 ntB1C2, A2B1, D1C2, A2D1

A3B2C3, A3D2C3

8% Denaturing PAGE

64 nt
52 nt

88 nt

80 nt
84 nt

B1, D1

A2, B2,  C2, D2

A1
A3B2, B2C3, C3D2, D2A3

C1

121110987654321 13

0:1 1:1 1:4 1:16 1:64
1:0 1:2 1:8 1:32 0:20

0:0
1:0

1:1

Figure 4.6: Denaturing gel electrophoresis. All lanes contain A:B:C in 1:1:1 stoichiometry, plus
various concentrations of D:D’ . Lane 1–9: D:D’ = 0:1, 1:0, 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64.
Lanes 10–13: D:D’ = 0:20, 1:1, 1:0, 0:0. (Note: the first gel was slightly ripped during staining.)

matches the slot’s sticky end. Lanes 11 and 3–9 show ligation of one unit of ABC with an x-fold
excess of D’ and equimolar D, where x ranges from 1 to 64. In every case, the closed molecule c
is formed, indicating that ABCD is still formed in the presence of competing D’ . Additional bands
also appear, possibly due to unexpected interactions involving D1 or D2.

4.1.3 Discussion

We interpret these results as follows. First, we believe that we are making the ABCD complex,
with the caveat that we believe the nicks in A1 and C1 are not being sealed. This suggests that (1)
in ABC, the linker B is properly spaced such that double crossover molecules A and C are roughly
coplanar, and (2) that in each double crossover molecule, the two helical axes are also roughly
coplanar. Second, we observe that D, which matches the sticky ends on both sides of ABC’s slot,
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out-competes D’ , which matches only on one side, even when D’ is 64-fold more abundant than D.
We plan to quantitate the thermodynamics of this reaction in the near future.

The experiments reported here bear on the two-dimensional self-assembly process postulated
in Section 3.2.5. These experiments are meant to model a single slot-filling step during the self-
assembly of a two dimensional lattice. In our experiments, this fundamental step can occur, and
with some specificity. These results encourage us to examine this step in closer detail in the future,
as well as to attempt the self-assembly of an entire sheet. We hope that the self-assembly of an
algorithmically patterned sheet of DNA can eventually be verified by TEM or AFM microscopy.

The self-assembly of molecules can correspond to several well known computational classes
up to and including universal computation. This suggests that external processing is not an in-
trinsic element of molecular computation; computationally universal “one-pot” reactions seem
plausible. We have shown some encouraging but preliminary experimental investigations into the
fundamental computational step in our two dimensional self-assembly model. The generality of
the approach used here suggests that the potential for universal computation may be widespread
among self-assembly processes in nature. In addition to being interesting in its own right as a
universal mechanism, it may be worth considering whether the self-assembly processes described
here could be useful technologically, perhaps as part of an approach to nanotechnology (Li et al.
1996).

4.2 Experiments with 2D Lattices

Abstract2 Molecular self-assembly presents a bottom-up approach to the fab-
rication of objects specified with nanometer precision. DNA molecular struc-
tures and intermolecular interactions are particularly amenable to design and
are sufficient for the creation of complex molecular objects. Here we report
the design and observation of two-dimensional crystalline forms of DNA that
self-assemble from synthetic DNA double-crossover molecules. Intermolecu-
lar interactions are programmed by the design of sticky ends that associate
according to Watson-Crick complementarity, enabling us to create specific
periodic patterns on the nanometer scale. The patterned crystals have been
visualized by atomic force microscopy.

Control of the detailed structure of matter on the finest possible scale is a major goal of chem-
istry, materials science and nanotechnology. This goal may be approached in two steps, (1) the
construction of individual molecules, represented by the triumphs of synthetic chemistry, and (2)
the arrangement of molecular building blocks into larger structures. The simplest arrangement of
molecular units, in two or three dimensions, is a crystal. Design components for crystals must
have definable intermolecular interactions and must be rigid enough to prevent the formation of
ill-defined aggregates (Liu et al. 1994). Branched DNA molecules with sticky ends appear to be

2Results in this section also appear in Winfree et al. (1998), and include joint work with Furong Liu, Lisa A. Wenzler,
and Nadrian C. Seeman, as described in Chapter 1. Thanks to John Abelson and his group for the use of his laboratory
and technical advice; to Anca Segall, Ely Rabani, and Bob Moision for instruction and advice on AFM imaging; and to
the Beckman Institute Molecular Materials resource center for assistance and use of their AFM facilities.
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promising for macromolecular crystal design (Seeman 1982), because their intermolecular inter-
actions can be programmed through sticky ends (Cohen et al. 1973) that associate to form B-DNA
(Qiu et al. 1997); however, studies of three- and four-arm junctions reveal that the angles flanking
their branchpoints are flexible (Ma et al. 1986; Petrillo et al. 1988).

The need for a rigid design component with predictable and controllable interactions has led to
the utilization of the antiparallel DNA double-crossover motif (Fu and Seeman 1993) for this pur-
pose. Double-crossover (DX) molecules are analogs of intermediates in meiosis (Schwacha and
Kleckner 1995) which consist of two side-by-side double-stranded helices linked at two crossover
junctions. Antiparallel DX molecules have been shown to possess the rigidity lacking in conven-
tional branched junctions, thus suggesting that they might be suitable for use in the assembly of
periodic matter (Li et al. 1996).

These findings stimulated a theoretical proposal to use two-dimensional (2-D) lattices of DX
molecules (Winfree 1996b) for DNA-based computation (Adleman 1994). In the mathematical
theory of tilings (Grünbaum and Shephard 1986), rectangular tiles with programmable interac-
tions, known as Wang tiles, can be designed so that their assembly must mimic the operation of a
chosen Turing Machine (Wang 1963). DX molecules acting as molecular Wang tiles could self-
assemble to perform desired computations (Winfree 1996b; Winfree et al. in press; Reif in press).
Consequently, the ability to create 2-D lattices of DX molecules assumes additional interest as a
step toward the design of molecular algorithms.

Here, we report the assembly from DX molecules of three 2-D lattices with two distinct topolo-
gies. The DX molecules, � 2 � 4 � 13 in size, self-assemble in solution to form single-domain
crystals as large as 2 � 8 microns with uniform thickness between 1 and 2 nm, as visualized by
atomic force microscopy (Binnig et al. 1986) (AFM). By incorporating a DNA hairpin into a DX
molecule to serve as a topographic label, we have produced stripes above the surface at intervals
of 25. Two-component lattices have been assembled with a stripe every other unit.

4.2.1 Design of DNA Crystal

Our approach to two-dimensional crystal design is derived from the mathematical theory of tiling
(Grünbaum and Shephard 1986; Winfree 1996b). The desired lattice is specified by a set of Wang
tiles with colored edges; the Wang tiles may be placed next to each other only if their edges are
identically colored where they touch (Figure 4.7a). Our goal is to design synthetic molecular units
corresponding to these tiles, such that they will self-assemble into a crystal that obeys the coloring
conditions. As an initial demonstration of molecular Wang tiles, we have chosen the simplest non-
trivial set of tiles: two tiles, A and B, which make a striped lattice (Figure 4.7a, left). Translated
into molecular terms, we obtain DX systems that self-assemble in solution into two-dimensional
crystals with a well-defined subunit structure.

The antiparallel DX motif (Fu and Seeman 1993) consists of two juxtaposed immobile 4-arm
junctions (Seeman 1982) arranged such that at each junction the non-crossover strands are antipar-
allel to each other. There are five distinct DX motifs, but only two are stable in small molecules
(Fu and Seeman 1993): these are called DAO (double crossover, antiparallel, odd spacing) and
DAE (double crossover, antiparallel, even spacing). The design depends critically upon the twist
of the B-form DNA double helix, in which a full turn takes place in� 10:5 base pairs (Wang 1979;
Rhodes and Klug 1980). DAO molecules have an odd number of half-turns (e.g. 3 half-turns is
� 16 base pairs) between the crossover points, while DAE molecules have an even number of
half-turns (e.g. 4 half-turns is � 21 base pairs). Computer models of the DX molecules used in
this study, shown in Figure 4.7b, were generated using NAMOT2 (Carter and Tung 1996). Com-
plete base stacking at the crossover points is assumed. The DAO molecules consist of 4 strands
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Figure 4.7: Design of DX molecular structure and arrangement into 2-D lattices. a, The logical
structure for 2-D lattices consisting of two units. Type A units have four colored edge regions,
each of which match exactly one colored region of the adjacent type B units. Note that rotations
and reflections of Wang tiles are disallowed; an equivalent restriction could also be obtained by
using non-rectangular tiles or more complex patterns of colors. b, Model structures for DAO type
A units. Each component oligonucleotide is shown in a unique color. The crossover points are
circled. c, The lattice topologies produced by the DAO. Each DX unit is highlighted by a grey rect-
angle. A unique color is chosen for each strand type which would be formed after covalent ligation
of units. Arrowheads indicate the 30 ends of strands. Black ellipses indicate dyad symmetry axes
perpendicular to the plane; black arrows indicate dyad axes in the plane (full arrowhead) or screw
axes (half arrowhead). d, The actual sequences used in the reported experiments (see Methods for
several exceptions). The schematics accurately report intended primary and secondary structure
– oligonucleotide sequence and paired bases – but are not geometrically or topologically faithful
because they don’ t show the double helical twist. Both type B and typeB̂ are shown, indicating
where the hairpin sequences are inserted.

of DNA, each of which participates in both helices. The DAE molecules consist of 3 strands
that participate in both helices (yellow, light blue, green), and 2 strands that do not cross over
(red, dark blue). Each corner of each DX unit has a single-stranded sticky end with a unique se-
quence; specific association of DX units is controlled by choosing sticky ends with Watson-Crick
complementarity.

To ensure that the component strands form the desired complexes, strand sequences must be
designed carefully so that alternative associations and conformations are unlikely. Therefore we
must solve the “negative design problem” (Seeman 1990; Yue and Dill 1992; Sun et al. 1996)
for DNA: find sequences that maximize the free energy difference between the desired conforma-
tion and all other possible conformations. We use the heuristic principle of sequence symmetry
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minimization (Seeman 1982, 1990) to minimize the length and number of unintentional Watson-
Crick complementary subsequences. In each DX molecule’s sequences, there are no 6-base sub-
sequences complementary to other 6-base subsequences except as required by the design, and
spurious 5-base complementarity is rare. Thus it is expected that during self-assembly, the DNA
strands spend little time in undesired associations and form DX units with high yield.

DX units can be designed that will fit together into a two-dimensional crystalline lattice. Here
we use two distinct DAO unit types (Figure 4.7a) to produce striped lattices. The lattices produced
by this system is called DAO-E to indicate the number of half-turns between crossover points
on adjacent units; its topology is shown in Figure 4.7c. The symmetries of the DAO-E lattice
is that corresponding to the layer group (Vainshtein 1994) p2122. Covalently joining adjacent
nucleotides at nicks in the lattice, by chemical or enzymatic ligation, would result in a “woven
fabric” of DNA strands. Ligation of the DAO-E design produces four distinct strand types, each
of which continues infinitely in the vertical direction (in this paper, “vertical” and “horizontal”
will always be as in Figure 4.7c).

Control of self-assembly to yield the 2-D lattice is obtained by two design criteria. First, the
sticky-end sequences for each desired contact are unique; this ensures that the orientations and
adjacency relations of the DX units comply exactly with the design in Figure 4.7a. Sticky ends are
length 5, so that each correct contact contributes approximately 8 to the free energy of association
at 25�C, according to a nearest-neighbor model (SantaLucia et al. 1996). Second, the lengths
of the DX arms and sticky ends, and thus the separations between crossover points, respect as
closely as possible the natural twist of the B-form DNA double helix; thus adjacent DX molecules
are effectively coupled by torsional springs whose equilibrium positions have been designed to
keep the adjacent DX molecules coplanar. For example, a linear rather than planar polymer could
result if each unit makes two sticky-end bonds to each neighboring unit, but this would require
overtwisting, undertwisting, or bending of the double helix, and thus is discouraged by our design.

Figure 4.7d shows the DX units and sequences used in our experiments, except as noted in
Methods. In each system, there are two fundamental DX units, called A and B, and, additionally,
an alternative form B̂ that contains two hairpin-terminated bulged 3-arm junctions (similar to the
DX+J motif (Li et al. 1996)). Based on studies of bulged 3-arm junctions (Ouporov and Leontis
1995), we expect that in each unit, one hairpin will point up and out of the plane of the DX
crystal, while the other hairpin will point down and into the plane, without significantly affecting
the rigidity of the molecule (Li et al. 1996). The B̂ units will replace the B units and serve as
contrast agents for AFM imaging, because their increased height can be measured directly.

4.2.2 Materials and Methods

DNA sequences and synthesis. Figure 4.7d shows sequences used in these experiments; for
historical reasons, some figures show experiments where variants of these sequences were used.
The sequences for DAO-E A, B, and B̂ given in Figure 4.7d were used for Figure 4.12bc. Fig-
ure 4.12adef show DAO systems with symmetrical sticky ends: the sequence for the green strands
of DAO A is 50TCACT...GAGAT30 and the sequence for the blue strands of DAO B and B̂
are 50AGTGA...ATCTC30. All oligonucleotides were synthesized by standard methods, PAGE
purified, and quantitated by UV absorption at 260 nm in H2O.

Annealing of oligonucleotides. The strands of each DX unit were mixed stoichiometrically
and dissolved to concentrations of .2 to 2 �M in TAE/Mg++ buffer (40 mM Tris�HCl (pH 8.0),
1 mM EDTA, 3 mM Na+, 12.5 mM Mg++). The solutions were annealed from 90�C to room
temperature over the course of several hours in a Perkin-Elmer PCR machine (to prevent concen-
tration by evaporation). To produce lattices, equal amounts of each DX were mixed and annealed
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from 50�C to 20�C over the course of up to 36 hours. In some cases (Figure 4.12abc) all strands
were mixed together from the very beginning.

Gel electrophoresis studies. For gel-based studies, T4 polynucleotide kinase (Amersham)
was used to phosphorylate strands with 32P; these strands were then PAGE purified and mixed
with an excess of unlabeled strands. Non-denaturing 4%, 5%, or 8% PAGE (19:1 acrylamide:bis-
acrylamide) in TAE/Mg++ was performed at 4�C or at room temperature. For denaturing exper-
iments, after annealing in T4 DNA ligase buffer (Amersham) (66 mM Tris�HCl(pH 7.6), 6.6 mM
MgCl2, 10 mM DTT, 66 �M ATP), 1 �l = 10 units T4 DNA ligase (Amersham) was added to 10 �l
DNA solution and incubated for up to 24 hours at 16�C or at room temperature. For exonuclease
reactions, 50 units of exonuclease III (Amersham) and 5 units of exonuclease I (Amersham) were
added after ligation, and incubated an additional 3.5 hours at 37�C. The solution was added to an
excess of denaturing dye buffer (0.1% xylene cyanol FF tracking dye in 90% formamide with 1
mM EDTA, 10 mM NaOH) and heated to 90�C for at least 5 minutes prior to loading. Denaturing
gels contained 4% acrylamide (90:1 acrylamide:bisacrylamide) and 8.3 M urea in TBE (89 mM
Tris�HCl (pH 8.0), 89 mM boric acid, 2 mM EDTA). Gels were analyzed by phosphorimager.

Preparation of AFM sample. 2 to 10 �l were spotted on freshly cleaved mica (Ted Pella,
Inc) and left to adsorb to the surface for 2 minutes. To remove buffer salts, 5 to 10 drops of
doubly-distilled or nanopure H2O were placed on the mica, the drop was shaken off and the
sample was dried with compressed air. Imaging was performed under isopropanol in a fluid cell
on a NanoScope II using the D or E scanner and commercial 200 �m cantilevers with Si3N4 tips
(Digital Instruments). The feedback setpoint was adjusted frequently to minimize contact force
to approximately 1 to 5 nN. Images were processed with a first- or third-order “fl atten filter,”
which independently subtracts a first- or third-order polynomial fit from each scanline to remove
tip artifacts; however, this technique introduces false “shadows” into the images shown here.

4.2.3 Results of Characterization by Gel Electrophoresis

A prerequisite for lattice self-assembly is the formation of the DX units from their component
strands. A thorough investigation of this issue was done for the original studies of DX (Fu and
Seeman 1993); that the new designs also behave well constitutes further validation of the antipar-
allel DX motif. Because the sticky ends of A units have affinity only for sticky ends of B units,
and not for themselves, neither A nor B alone in solution can assemble into a lattice. Thus the
formation of isolated DX units can be monitored easily by non-denaturing gel electrophoresis, as
described previously (Fu and Seeman 1993), and greater than 95% of the material is seen in the
expected band for A and greater than 85% for B(Figure 4.8). Additionally, complexes are formed
only by strands which were designed to interact. However, strand 3 of B does not bind fully to
strand 4, unless strand 2 is also present. This may be due to a potential hairpin structure near the
50 end of strand 3; when strand 2 binds to strand 3, we postulate that this hairpin is undone. Note
also that dimer and multimer species are not found, and in particular note that the individual A or
B monomers do not assemble into extended structures, such as the desired lattice.

Solutions containing A units and B units can be mixed and annealed to form AB lattices.
Lane 4 of Figure 4.9(left) shows that the self-assembled structure is too large to migrate through
the gel, although a fraction of the material is coming out of the well in a smear. Enzymatic
ligation of these lattices with T4 DNA ligase produces immobile material, while the A and B

units alone are not substrates for ligation (Figure 4.9(left). The nicks in the lattice, where strands
from adjacent DX units abut, are all on the upper or lower surface of the lattice, where they are
accessible to the enzyme. The ligated lattice should contain long covalent DNA strands, which
serve as reporters of successful lattice formation (shorter strands report either the presence of
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Figure 4.8: Formation gels for the A and B double-crossover molecules, run at 1�C by 5% non-
denaturing PAGE. Every strand is radiolabelled so that quantitation is possible.

small aggregates or an occasional failure to ligate within the lattice). All four reporter strands
extend for more than 30 repeats when visualized by denaturing polyacrylamide gel electrophoresis
(Figure 4.9, right). Longer strands co-migrate on this gel, so we cannot determine the full extent
of polymerization. These results suggest that the lattice is a good substrate for T4 DNA ligase,
and that the lattices can form with more than 30 � 30 units. However, unintended associations or
side reactions could lead to similar distributions of strand lengths after ligation. Direct physical
observation is necessary to confirm lattice assembly.
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Figure 4.9: (left) Non-denaturing gel, StainsAll stain. Lanes 2-4 show A alone, B alone, and
AB together. Lanes 5-7 show A alone ligated, B alone ligated and AB together ligated. All the
material in lane 7 is in a sharp band directly around the well (circled); this band can be seen clearly
in color, but not in the B/W rendition here. (right) Denaturing gel, with differential radiolabelling.
Every lane contains either marker or ligated AB; in each lane the radiolabelled oligonucleotide is
indicated below.
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As a control to test the 4-connected nature of the putative lattice product, versions of A and
B were made with certain sticky ends truncated, as shown in Figure 4.10. Av and Bv were
designed to make vertical one-dimensional chains of DX units; Ah and Bh were designed to
make horizontal one-dimensional chains of DX units; and Ad and Bd were designed to make
diagonal one-dimensional chains of DX units. However, quite unlike the AB product stuck in the
well, all three truncated systems produced what appear to be dimers on the non-denaturing gel.
No ligase was used. Apparently, the chain structures are either not being made, or they are falling
apart into dimers in the gel. We do not yet understand these results.
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Figure 4.10: (left) 5% Non-denaturing gel, with radiolabelling of A3 and B3. (right) Diagram of
the truncated DX units, and intended chain structures.

4.2.4 Results of AFM Imaging

We have used atomic force microscopy (Binnig et al. 1986) to demonstrate unequivocally the
formation of 2-D lattices. A and B units are annealed separately, then combined and annealed
together to form AB lattices. The resulting solution is deposited for adsorption on an atomi-
cally flat mica surface, and then imaged under isopropanol by contact mode AFM (Hansma et al.
1992). The solution is not treated with DNA ligase, and thus the lattices are held together only
by noncovalent interactions (e.g. hydrogen bonds and base stacking). This protocol ensures that
the solution contains no protein contaminants and demonstrates that ligase activity is not neces-
sary for the self-assembly process. Negative controls of buffer alone and of A or B alone show
no aggregates larger than 20 nm (Figure 4.11abc). In separate experiments, A and B DAO units
were modified by the removal of two sticky ends from each unit (e.g. all yellow and red sticky
ends in Figure 4.7d); when the modified A and B units were annealed together, we observed only
linear and branched structures with apparent widths typically less than 10 nm (Figure 4.11def),
providing additional negative controls. However, the unmodified AB samples contain 2-D sheets
many microns long, often more than 200 nm wide (Figure 4.12a). The apparent height of the
sheets is 1:4 � :5 nm, suggesting a monolayer of DNA. The sheets often seem ripped and appear
to have a grain, in that rips have a preferred direction consistent with the design (Figure 4.7c). In
the DAO-E lattice, a vertical rip requires breaking six sticky-end bonds per 12 nm torn, whereas
a horizontal rip requires breaking only one sticky-end bond per 13 nm torn. A possible vertical
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column, perpendicular to the rips, is indicated in Figure 4.12a (arrows). Although in this image
the columns are barely perceptible, Fourier analysis shows a peak at 13 � 1 nm, suggesting that
observed columns are 1 DX wide. Periodic topographic features would not be expected in the
ideal AB lattice; however a vertically stretched lattice may have gaps between the DX units that
could produce the periodic features seen here. Because crystals are found in AFM samples taken
from both the top and the bottom of the solution, we believe that crystals form in solution and are
not due to interaction with a surface.

a b c

d fe

Figure 4.11: AFM images of buffer (a), A and B controls (b and c respectively), and sticky-end-
truncation controls ABv (d), ABh (e), and ABd (f). All scale bars are 300 nm; images show
500 � 500 nm, 1 � 1 �m, or 3 � 3 �m. The grayscale indicates height above the mica surface;
apparent height of features is less than 5 nm.

4.2.5 Control of Surface Topography

The self-assembling AB lattice can serve as scaffolding for other molecular structures. We have
decorated B with two DNA hairpin sequences inserted into its component strands, which we call
B̂ (Figure 4.7d). So decorated, the vertical columns of the lattice become strikingly apparent as
stripes in AFM images (Figure 4.12bc), further confirming the proper self-assembly of the 2-D
lattice. The spacing of the decorated columns is 25 � 2 nm for the DAO-E lattice, indicating
that every other column is decorated, in accord with the design. Slow annealing at 20�C and
gentle handling of the DAO-E sample during deposition and washing has produced single crystals
measuring up to 2�8 �m(Figure 4.12def). Close examination shows that the stripes are continuous
across the crystal, and thus it appears to be a single domain containing over 500,000 DX units.
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a

d e

b c

f

Figure 4.12: AFM images of unmodified DAO-E AB lattice (a). A possible vertical column is
indicated by the arrows. Fourier analysis shows 13 � 1 nm periodicity; each DAO is 12.6 nm
wide. (b) and (c) show DAO-E AB̂ lattice (two views of the same sample). Stripes have 25 � 2

nm periodicity; the expected value is 25.2 nm. (def) show a large single-domain crystal of DAO-E
AB̂ lattice at three levels of detail (all the same sample). The largest domain is roughly 2�8 �m,
and contains roughly 500,000 DX units. All scale bars are 300 nm; images show 500 � 500 nm,
1:5 � 1:5 �m, or 10 � 10 �m. The grayscale indicates height above the mica surface; apparent
lattice height is between 1 and 2 nm.

We have also tested DAO systems incorporating only one of the two hairpins inB̂, DAO
systems in which the 3-arm junctions are relocated by two nucleotides toward the center of the
molecule. All systems produced results similar to those shown in Figure 4.12 when imaged by
AFM (data not shown). The lattice assembly appears to be robust to variations in the local DX
structure and is not sensitive to small variations in the annealing protocol. (Also see Winfree
et al. (1998) for similar results obtained in another laboratory using different buffers, annealing
conditions, and AFM instruments.)

In all images of AB and AB̂ systems, we observed many DNA structures in addition to
the isolated 2-D crystals discussed above. In many images the 2-D crystals appear to overlap,
leading to discrete steps in thickness (Figure 4.12cde). The arrangement of crystals on the mica
– solitary, overlapping, piled up like driftwood, ripped to shreds – depends sensitively upon DNA
concentration and upon the sample preparation procedure, especially the wash step. Prominently,
the background of every image contains small objects, which we assume to be associations of
small numbers of DX units. Also, long, thin “ rods” appear in some preparations (data not shown).
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These structures have not been characterized.

4.2.6 Applications

The programmability of the system described here has already been demonstrated by Winfree
et al. (1998), where a system of four tiles is developed to produce stripes of twice the periodicity.
The produced lattice can serve as a molecular scaffold. Instead of DNA hairpins, other chemical
groups can be used to label the DX molecules. Previous groups have used biotin-streptavidin-gold
to label linear DNA for imaging by AFM (Shaiu et al. 1993a,b). Winfree et al. (1998) uses 1.4
nm nanogold-streptavidin conjugates to label DAE molecules. For these experiments, the central
strand ofB contains a 50 biotin group; after assembly ofAB lattices, the solution containing DNA
lattices was incubated with streptavidin-nanogold conjugates and then imaged by AFM.

Self-assembly is increasingly being recognized as a route to nanotechnology (Whitesides et al.
1991). Our results demonstrate the potential of using DNA to create self-assembling periodic
nanostructures. The periodic blocks used here are composed of either two or four individual DX
units. However, the number of component tiles in the repeat unit does not appear to be limited
to such small numbers, suggesting that complex patterns could be assembled into periodic arrays.
These patterns could be either direct targets in nanofabrication or aids to the construction of such
targets. Because oligonucleotide synthesis can readily incorporate modified bases at arbitrary
positions, it should be possible to control the structure within the periodic block by decoration
with chemical groups, catalysts, enzymes and other proteins (Niemeyer et al. 1994), metallic
nanoclusters (Alivisatos et al. 1996; Mirkin et al. 1996), conducting silver clusters (Braun et al.
1998), DNA enzymes (Breaker and Joyce 1994) or other DNA nanostructures such as polyhedra
(Chen and Seeman 1991; Zhang and Seeman 1994b).

It may be possible to extend the two-dimensional lattices demonstrated here into three di-
mensions. Designed crystals could potentially serve as scaffolds for the crystallization of macro-
molecules (Seeman 1982), as photonic materials with novel properties (Joannopolous et al. 1995),
as designable zeolite-like materials for use as catalysts or as molecular sieves (Ribeiro et al. 1996),
and as scaffolds for the assembly of molecular electronic components (Robinson and Seeman
1987) or biochips (Haddon and Lamola 1985).

The self-assembly of aperiodic structures should also be considered. It may be possible to
design molecular Wang tiles that self-assemble into aperiodic crystals according to algorithmic
rules (Winfree 1996b; Winfree et al. in press). It will be crucial to understand the mechanisms of
crystallogenesis and crystal growth in this system to provide a firm underpinning for theoretical
proposals of computation by self-assembly.

Progress in this field will require detailed knowledge of the physical, kinetic, structural, dy-
namic and thermodynamic parameters that characterize DNA self-assembly. Additionally, im-
proved methods for error reduction and purification must be developed. The approach described
here provides a uniquely versatile experimental system for investigating these issues.
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F. Ramôa Ribeiro, F. Alvarez, C. Henriques, F. Lemos, J. M. Lopes, and M. F. Ribeiro. Structure-
activity relationships in zeolites. Journal of Molecular Catalysis A: Chemical, 96:245–270,
1996.

Bruce H. Robinson and Nadrian C. Seeman. The design of a biochip: A self-assembling
molecular-scale memory device. Protein Engineering, 1(4):295–300, 1987.

Raphael M. Robinson. Undecidability and nonperiodicity of tilings of the plane. Inventiones
Math., 12:177–909, 1971.

Paul W. K. Rothemund. A DNA and restriction enzyme implementation of Turing Machines. In
Lipton and Baum (1996), pages 75–119.

Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V. Chelyapov, Myron F. Goodman, Paul
W. K. Rothemund, and Leonard M. Adleman. A sticker based architecture for DNA computa-
tion. In Landweber and Lipton (in press).

Kensaku Sakamoto, Daisuke Kiga, Ken Momiya, Hidetaka Gouzu, Shigeyuki Yokoyama, Shuji
Ikeda, Hiroshi Sugiyama, and Masami Hagiya. State transitions with molecules. In Kari (in
press ).



100

John SantaLucia, Jr., Hatim T. Allawi, and P. Ananda Seneviratne. Improved nearest-neighbor
parameters for predicting DNA duplex stability. Biochemistry, 35(11):3555–3562, 1996.

Anthony Schwacha and Nancy Kleckner. Identification of double Holliday junctions as interme-
diates in meiotic recombination. Cell, 83:783–791, 1995.

Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology, 99(2):
237–247, 1982.

Nadrian C. Seeman. De novodesign of sequences for nucleic acid structural engineering. Journal
of Biomolecular Structure & Dynamics, 8(3):573–581, 1990.

Wen-Ling Shaiu, Drena D. Larson, James Vesenka, and Eric Henderson. Atomic force microscopy
of oriented linear DNA molecules labelled with 5nm gold spheres. Nucleic Acids Research, 21
(1):99–103, 1993a.

Wen-Ling Shaiu, James Vesenka, Danial Jondle, Eric Henderson, and Drena D. Larson. Visu-
alization of circular DNA molecules labelled with colloidal gold spheres using atomic force
microscopy. Journal of Vacuum Science and Technology A, 11(4):820–823, 1993b.

Rakesh Kumar Sinha and Jayram S. Thathachar. Efficient oblivious branching programs for
threshold functions. In Proceedings of the 35th Symposium on Foundations of Computer Sci-
ence, pages 309–317, 1994.

A. R. Smith, III. Simple computation-universal cellular spaces. Journal of the ACM, 18:339–353,
1971.

Warren D. Smith. DNA computers in vitro and in vivo. In Lipton and Baum (1996), pages 121–
185.

Paul J. Steinhardt and Stellan Ostlund, editors. The Physics of Quasicrystals. World Scientific,
Singapore, 1987.

Willem P. C. Stemmer, Andreas Crameri, Kim D. Ha, Thomas M. Brennan, and Herbert L.
Heyneker. Single-step assembly of a gene and entire plasmid from large numbers of
oligodeoxyribonucleotides. Gene, 164(1):49–53, 1995.

Shaojian Sun, Rachel Brem, Hue Sun Chan, and Ken A. Dill. Designing amino acid sequences to
fold with good hydrophobic cores. Protein Engineering, 9(1):1205–1213, 1996.

Christopher Y. Switzer, Simon E. Moroney, and Steven A. Benner. Enzymatics recognition of the
base-pair between isocytidine and isoguanosine. Biochemistry, 32(39):10489–10496, 1993.

Tommaso Toffoli and Norman Margolus. Cellular Automata Machines. MIT Press, 1987.

Boris K. Vainshtein. Modern Crystallography, Volume 1: Fundamentals of Crystals. Springer-
Verlag, New York, 1994.

Hao Wang. Dominoes and the AEA case of the decision problem. In Proc. Symp. Math. Theory
of Automata, pages 23–55, New York, 1963. Polytechnic Press.

J. C. Wang. Helical repeat of DNA in solution. Proc. Nat. Acad. Sci. USA, 76:200–203, 1979.

Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.



101

James G. Wetmur. DNA probes: Applications of the principles of nucleic acid hybridization.
Critical Reviews in Biochemistry and Molecular Biology, 36:227–259, 1991.

George M. Whitesides, John P. Mathias, and Christopher T. Seto. Molecular self-assembly and
nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 254:1312–
1319, 1991.

Erik Winfree. Complexity of restricted and unrestricted models of molecular computation. In
Lipton and Baum (1996), pages 187–198.

Erik Winfree. On the computational power of DNA annealing and ligation. In Lipton and Baum
(1996), pages 199–221.

Erik Winfree. Simulations of computing by self-assembly. In Kari (in press ).

Erik Winfree. Whiplash PCR for O(1) computing. In Kari (in press ).

Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman. Design and self-assembly of
two-dimensional DNA crystals. Nature, to appear, 1998.

Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Universal computation via self-assembly
of DNA: Some theory and experiments. In Landweber and Lipton (in press).

Stephen Wolfram. Geometry of binomial coefficients. American Mathematical Monthly, 91:566–
571, 1984.

Stephen Wolfram. Minimal cellular automaton approximations to continuum systems. In Cellular
Automata and Complexity, pages 329–358. Addison Wesley, 1994. Originally presented at
Cellular Automata ’86.

David Wood, editor. Proceedings of the3rd DIMACS Meeting on DNA Based Computers, held
at the University of Pennsylvania, June 23-25, 1997, DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science., Providence, RI, in press. American Mathematical Society.

Kaizhi Yue and Ken A. Dill. Inverse protein folding problem - designing polymer sequences.
Proc. Nat. Acad. Sci. USA, 89(9):4163–4167, 1992.

J. Yunes. Seven-state solutions to the firing squad synchronization problem. Theoretical Computer
Science, 127:313–332, 1994.

Siwei Zhang and Nadrian C. Seeman. Symmetric holliday junction crossover isomers. Journal of
Molecular Biology, 238:658–668, 1994a.

Yuwen Zhang and Nadrian C. Seeman. The construction of a DNA truncated octahedron. Journal
of the American Chemical Society, 116:1661–1669, 1994b.


