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Abstract

In this paper we examine the computational capabilities inherent in the hybridiza-

tion of DNA molecules. First we consider theoretical models, and show that the

self-assembly of oligonucleotides into linear duplex DNA can only generate sets of se-

quences equivalent to regular languages. If branched DNA is used for self-assembly

of dendrimer structures, only sets of sequences equivalent to context-free languages

can be achieved. In contrast, the self-assembly of double crossover molecules into

two dimensional sheets or three dimensional solids is theoretically capable of uni-

versal computation. The proof relies on a very direct simulation of a universal

class of cellular automata. In the second part of this paper, we present results

from preliminary experiments which investigate the critical computational step in

a two-dimensional self-assembly process.

1 Introduction

A fundamental property of DNA is that, under the right conditions, Watson-Crick comple-
mentary regions of single-stranded DNA will hybridize and form a double helical structure.
This property, in vitro and in vivo, can lead DNA to assume a remarkable diversity of

geometric forms1. Under certain simplifying conditions, the behavior of hybridization is suf-
�ciently predictable to be considered as a computational primitive; i.e., a function from initial
oligonucleotides to �nal supramolecular structures is computed. The computational aspects
of self-assembly were exploited for the �rst time in [Adleman], where linear self-assembly

was used as a step in solving the Hamiltonian Path Problem. When the self-assembly of
tree-like structures takes place, due to the presence of branched junctions, a slightly more
powerful computation results. We review a two dimensional generalization capable of uni-
versal computation, as suggested in [Winfree], and also suggest a concrete three dimensional
self-assembly process.
�To whom correspondence should be addressed (winfree@hope.caltech.edu). Erik Winfree has been supported in part by

National Institute for Mental Health (NIMH) Training Grant # 5 T32 MH 19138-06; also by General Motors' Technology

Research Partnerships program and by the Center for Neuromorphic Systems Engineering as a part of the National Science

Foundation Engineering Research Center Program under grant EEC-9402726. The experimental portion of this research has

been partially supported by grants N00014-89-J-3078 from the O�ce of Naval Research and GM-29554 from the NIH (to NCS).
1In vivo, not only is there single-stranded and double-stranded DNA, but branched junctions are formed during recombina-

tion, and trypanosomes maintain complex networks of circular DNA within which RNA editing occurs.
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2 Computational Power of Abstracted Hybridization

In order to understand the computational implications of DNA hybridization, we will �rst
consider a highly abstracted mathematical model. The physical system we would like to
model can be described as follows:

Synthesize several sequences of DNA. Mix the DNA together in solution. Heat
it up and slowly cool it down, allowing complexes of DNA to form. Chemically
or enzymatically ligate adjacent strands. Denature the DNA again, and ask, what

single-stranded DNA sequences are now present in the solution?

A proper answer to this question is beyond our capability, and realistically detailed models
might not be enlightening regarding the logical essence of self-assembly. We therefore inves-
tigate very simple models, which, nonetheless, are su�ciently realistic that translation into

real world scenarios should be direct. We will consider a number of properties which DNA
self-assembly may be postulated to obey, and we will analyze the computational capability
and the limits of any self-assembly process which obeys those properties.

Informally, the properties we consider are:

1. Constant Temperature. The number of base-pairs required for the stability of DNA
complexes does not change during the course of the self-assembly. We thus don't con-
sider annealing, where at high temperatures only long regions will hybridize but later at
lower temperatures even short regions can hybridize, but rather we model a \constant

temperature" process.

2. Perfect Watson-Crick Complementarity. Hybridization only occurs between se-
quences with perfect Watson-Crick complementarity. Hybridization of mismatching

sequences, or that which creates bubbles, branched junctions, triple helices, and other
unusual structures, is not considered.

3. Permanant Binary Events. All self-assembly interactions occur between two com-
plexes at a time, and no more. These interactions are exclusively hybridizations, joining
two complexes together. Furthermore, in the model once two complexes join, they never
dissociate.

4. No Intramolecular Events. A DNA complex which has self-assembled will not in-
teract with itself, for example by cyclizing. Note, however, that some physically in-
tramolecular interactions can be modeled as a part of a binary event, as discussed

below.

5. Single vs Multiple Binding Regions per Event. We will consider two cases: either
(a) each binary hybridization event creates a single contiguous Watson-Crick region,

else (b) the binary events may result in the formation of several physically separated
hybridized regions between the two complexes. The latter case is meant to model
physical situations where an intermolecular hybridization is immediately followed by an
intramolecular hybridization. The case we are interested in is discussed in Section 2.5

(see Figure 7).
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6. Speci�ed Classes of Initial Complexes. Because of our constant-temperature as-
sumption, it becomes useful to assume that some complexes have already formed prior

to the stage of self-assembly which we will consider. Later in the paper, we will consider
initial complexes which consist of (a) oligonucleotides, (b) duplex DNA with sticky ends,
(c) hairpins with sticky ends, (d) three-armed junctions with sticky ends, (e) double
crossover molecules with hairpins and sticky ends, and (f) arbitrary complexes.

Properties (1), (2) and (3) are used primarily for logical simplicity. If Property (4) were
changed to allow intramolecular events, it is possible that some of our results would be slightly
modi�ed. We will analyze how our results change under di�erent choices for Properties (5)

and (6). In Section 2.5, we impose an additional property in order to incorporate geometrical
considerations for lattice self-assembly.

2.1 Language Theory and Grammars

Before we present our model of DNA self-assembly, we should comment on what it means to
compute by self-assembly. As mentioned above, the typical case is that one starts with a small
variety of synthesized oligonucleotides, and one ends with great variety of self-assembled
strands. The resulting strands are not random; they have certain properties that derive from

being formed from the original oligonucleotides according to certain rules of hybridization.

An analogous situation arises in formal language theory, which has been well understood for
many years. There, rather than test tubes of strands, one is interested in sets of symbolic
strings, and in methods of generating them. We will sketch the basics here; for a full
development see [Ginsburg].

An alphabet is a �nite set of symbols, for example fA;C;G; Tg or f0; 1g or fx; y; z; (; );+; �g.
A string over an alphabet is a �nite sequence of symbols from the given alphabet, for example
TATAA or 101011 or (x+y)�z. A language is a well-de�ned, possibly in�nite set of strings,
for example fall strings over fC; Tgof length 70g or fall prime numbers, written in binaryg
or fall well-formed formulas over fx; y; z; (; );+;�gg.

Although one cannot write down each and every string in an in�nite language, one can ask
the membership question: is string x in language L? Note that if the language L contains

all bit strings x for which function f(x) = 1, the the membership question is equivalent to
boolean function evaluation. The membership question may be harder or easier to answer,
depending on x and L. Formal language theory goes to great pains to classify languages
according to how fancy the computer must be to answer the membership problem. We

sketch the fundamental result due to Noam Chomsky, known as the language hierarchy.
This requires formalizing the speci�cation of languages by generative rules.

A rewriting rule x ! y, where x and y are strings, speci�es that a string s = axb can be
rewritten to produce the new string s0 = ayb. A grammar G is a collection of rewriting rules
together with a division of the alphabet into two groups: terminal symbols and nonterminal

symbols, where only nonterminals appear on the left hand side of rewriting rules. Each
grammar uniquely de�nes a language LG as follows: the string of terminals s is in LG i�
it can be obtained from the special nonterminal S by the repeated application of rewriting
rules in some order (called a derivation).
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Grammars may be classi�ed by what kinds of rules they use. We give examples of the three
main classes below:

Regular grammars use rules of the form A ! pB and A ! p where A and B are
nonterminal symbols and p is a string of terminals. Languages generated by regu-
lar grammars are called regular languages. For example, consider the regular grammar

GE = fS ! 0S; S ! 1T; S ! 0; T ! 0T; T ! 1S; T ! 1g where 0 and 1 are terminals.
This grammar gives rise to all bit strings with an even number of 1's. 101011 2 LGE

because S ! 1T ! 10T ! 101S ! 1010S ! 10101T ! 101011. Note that during
the derivation we always have a single nonterminal at the right, where all the action

takes place. Despite their apparent simplicity, regular languages have found extensive
use in pure and applied computer science, perhaps because their membership question
can always be answered by an exceedingly simple abstract computer known as a �nite
state machine.

Context-free grammars use rules of the form A ! P where again A is a nonterminal
symbol, but now P is an arbitrary string of terminals and nonterminals. Languages
generated by context-free grammars are called context-free languages. Consider the

grammar GF = fS ! S+S; S !M;M !M �M;M ! (S);M ! x;M ! y;M ! zg
where the terminals are fx; y; z; (; );+; �g. This grammar gives rise to well-formed
formulas. (x + y) � z 2 LGF because S ! M ! M � M ! M � z ! (S) � z !
(S+S)�z ! (S+M)�z ! (S+y)�z ! (M+y)�z ! (x+y)�z. Note that whereas it is
impossible to generate regular languages whose strings all have long-range structure, one

can generate long-range \nested" structure in a context-free language { for example,
every parenthesis must be matched in the formulas above. Context-free languages
include regular languages. The membership question for context-free languages can be
answered by a slightly more complex machine known as a nondeterministic pushdown

automaton.

Unrestricted grammars use rules of the form A ! P where now A may be an arbi-

trary strings of nonterminals, and P is an arbitrary string of terminals and nontermi-
nals. Languages generated by unrestricted grammars are called recursively enumerable

languages because they include every language which can be generated (enumerated)
by any computational process (recursion). Recursively enumerable languages include
context-free languages, regular languages, and much more. They are as fancy as you

can get. A very simple example: consider the alphabet fS; L;R;
 

B ;
!

B ;
 

W ;
!

W ; 0; 1g and

the grammar GP = fS ! 1; S ! LR;L ! L
!

B ; L ! 1; R !
 

B R;R ! 1;
!

B
 

B!
 

W
!

W

;
!

B
 

B! 0;
!

B
 

W!
 

B
!

B ;
!

B
 

W! 1;
!

W
 

B!
 

B
!

B ;
!

W
 

B! 1;
!

W
 

W!
 

W
!

W ;
!

W
 

W! 0g where the terminals
are 0 and 1. This gives rise to the rows of Pascal's triangle mod 2. The third row
101 2 LGP because S ! LR ! L

!

B R ! L
!

B
 

B R ! 1
!

B
 

B R ! 10R ! 101. Later,

we will make use of a subclass of unrestricted grammars equivalent to blocked cellular
automata, which generalize the example and which are still capable of generating all
recursively enumerable languages; that is, they are universal. A surprising consequence
of universality is that the membership question for recursively enumerable languages is
sometimes impossible to answer!
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2.2 DNA Complexes and Self-assembly Rules

Grammars turn out to have a close relationship to the self-assembly models we discuss here.

However, to make this relationship precise, we de�ne our model formally.

A DNA complex
2 is a connected directed graph with vertices labeled from fA;C;G; Tg, edges

labeled from fbackbone; basepairg, with at most one incoming and one outgoing edge of each
type at each node (thus at most four incident edges total), and where for every basepair edge
x ! y there is a reciprocal basepair edge y ! x. Furthermore, all base-pairing in a DNA

complex must be Watson-Crick, that is, every basepair edge must be within a subgraph
isomorphic to one of the 10 given in Figure 1a.
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Figure 1: Some DNA complexes. Solid lines represent backbone edges; each dotted line represents a pair of reciprocal basepair

edges. (a) The 10 Watson-Crick subgraphs. (b) The valid ligation site. (c) A strand, a duplex with sticky ends, a hairpin with

a sticky end, a 3-armed branched junction, and a DAO double crossover (DX) unit with sticky ends.

A DNA complex (just complex for short) represents several DNA polynucleotides bound

together by Watson-Crick hybridization. Note that this representation supports a rich variety
of DNA structures, but structures such as triple helices are missing; similarly, it is lacking
notions of geometry and topological linking. Also, we must be careful because it is possibly
to specify physically impossibly structures.

It will be useful to introduce a few examples of DNA complexes, shown in Figure 1c. A

strand consists of a chain of backbone-connected nodes, with no basepair edges. Strands
may be either linear or circular. A duplex consists of two strands with contiguous basepair
edges between them. A duplex may optionally have a sticky-end on either end. An n-
armed (branched) junction consists of n duplex arms arranged around a central point. A
double crossover unit (DX unit) consists of two adjacent duplexes with two points of strand

exchange3. For formal reasons, the empty graph � is a DNA complex.

We now de�ne some operations on complexes. In our model, hybridization is indicated by
C1 +B C2 = C3, where +

B
denotes the formation of basepair edges B between nodes of C1

and nodes of C2. If the graph consisting of both C1 and C2 and the edges B is a DNA
complex, then C3 is that graph; else C3 = � (for example, if a new edge joins two T 's). The
hybridization operation will be used to describe self-assembly, below.

2Similar to Beaver's cluster [Beaver].
3Real DX molecules [Fu] come in a number of geometric varieties (we use \DAO" here), each of which put constraints on

the symmetry and the number of nucleotides between crossover points. We ignore these constraints in the theoretical section.
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To analyze the complexes present after self-assembly, we introduce two other operations
based on ligation and denaturing. C 0 = ligate(C) is obtained by adding a backbone edge

from node j to node i in every occurrence of the subgraph shown in Figure 1b, so long as
nodes i and j have no other incident backbone edges.

To model the denaturing of a complex, we de�ne fCig = denature(C) to be the set of all
strands in C, i.e., each Ci is a backbone-connected component of C (with no basepair edges).
Note that if C contains topologically linked circular strands, then denature will \magically"

unlink them from each other4.

In analogy to formal language theory, we de�ne a language of DNA complexes to be a well-
de�ned, possibly in�nite set of DNA complexes. We can generate a language of complexes
LR;A by applying self-assembly rules R to an initial language A, usually �nite5. The rules R

specify which hybridizations C1 +B C2 = C3 are allowed. Let L̂R;A be the transitive closure

of A under all allowed hybridizations. In other words, (a) A � L̂R;A, (b) if C1; C2 2 L̂R;A

and C1+B C2 = C3 is allowed, then C3 2 L̂R;A, and (c) no other complexes are in L̂R;A. Now

let LR;A � L̂R;A consist of those complexes for which no further hybridization is allowed.
Loosely, LR;A is meant to model the DNA structures which would form given an in�nite

volume of DNA and in�nite time, presuming that only the hybridizations allowed by R are
physically relevant, and ignoring transient structures.

We will be especially interested in the self-assembly rules6 RT
1 which allow C1+B C2 = C3 6= �

i� (1) the subgraph of C3 induced by B contains exactly two T -mer (or longer) strands and
(2) at most two edges lead to or exit from this subgraph. Thus, RT

1 allows only hybridization
of su�ciently long sticky-ends, as illustrated in Figure 2.

B

Figure 2: A hybridization C1 +B C2 = C3 allowed by R3
1. The edges of B are emphasized in C3, and the subgraph induced

by B has a dotted box around it.

Both ligate and denature can be generalized to set operations by applying the operation to
each complex in the original set, and taking the union of all complexes that result. Since
single-stranded DNA can be identi�ed with its sequence, written 5' ! 3', we can consider
denature to be a function from sets of complexes to sets of strings over fA;C;G; T; �g, where
� is used to indicate a circular DNA strand.

Finally, we note that to represent strings in alphabets � other than fA;C;G; Tg, we may

use a pre�x-free codebook C which assigns to each symbol � in � a string C� over fA;C;G; Tg
4Circular strands are not necessary in our constructions, but they must be considered in Theorem 2(2).
5Logicians may think of A as \axioms" while R may be thought of as \inference rules".
6The subscript \1" is used because these rules give rise to essentially one-dimensional complexes.
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such that no string is a pre�x of another string. A DNA sequence s = s1s2 : : : sn can then
be translated into a string C(s) over � by scanning through s from left to right: if si begins
a subsequence of s which exactly matches some C�, then si is replaced by �, else si is erased;
then si+1 is processed, and so forth. For example, if � = f0; 1g, C0 = CAG, and C1 = CTC,
then C(AAACTCTCAGTCAG) = 1100.

In summary, given a �nite set of complexes A, self-assembly rules R, and codebook C,
we can obtain a language of complexes LR;A as well as a language of strings LR;A;C =
C(denature(ligate(LR;A))).

We now turn to our results. The theorems are stated, explained, and examples are given.
Full proofs will appear elsewhere.

2.3 Linear Self-assembly is equivalent to Regular Languages

In this section we address the question of what can be computed by the self-assembly DNA
which obeys Properties (1-4), (5a), and (6a) or (6b). This is the familiar case of the self-
assembly of long duplex DNA from many small oligonucleotides or sticky-ended fragments.

That is, self-assembly begins with oligonucleotides or duplex DNA with sticky ends, and
proceeds at a constant temperature, allowing only permanent binary events with a single
perfectly complementary hybridization site and no intramolecular hybridization. We make
this question precise in our model by asking, what languages of strings L can be achieved as

LRT
1
;A;C for some choice of T , C, and A where A contains only linear duplex complexes?

The following7 can be proved by construction:

Theorem 1. (1) For all regular languages L, there exists a positive integer T , a codebook
C, and a set of linear duplexes A such that L = LRT

1
;A;C. (2) For all positive integers T ,

codebooks C, and sets of linear duplexes A, LRT
1
;A;C is a regular language.

We will sketch the construction used in the proof of (1) { see Figure 3 for an example.
Consider a regular grammar G for L. We design su�ciently dissimilar sequences Si (we call
their Watson-Crick complements S 0i) for all the terminal and nonterminal symbols in G. For
each rule A ! p1 : : : pnB, we design a duplex with a sticky end S 0A, and internal duplex

region Sp1 : : : Spn , and a sticky end SB if B is present. We also design a duplex with one
blunt end and a sticky end SS, to represent the start symbol S. These duplexes make up
the initial set of complexes A. T is chosen to be the length of the nonterminal sequences
Si. After self-assembly, the terminal complexes in LRT

1
;A will correspond to derivations in

G. After ligation, each complex will be a blunt-ended duplex whose sequence consists of
terminal sequences interspersed with nonterminal sequences. A codebook with Ci = Si for
each terminal symbol i will \erase" the nonterminal sequences; thus LRT1 ;A;C

will be exactly
L. 2

A sketch of the proof of (2) is as follows: we construct a regular grammar G which generates
exactly the strands in denature(ligate(LRT

1
;A)). This requires creating a nonterminal symbol

for each sticky end of a duplex in A, and considering all (�nitely many) T -or-more base
overlaps of these sticky-ends; a grammar rule is provided for each such interaction. Care must
be taken for gaps and for sticky ends which have no interactions { both lead to termination

7We note that this theorem still holds when \duplexes" is replaced by \strands".
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Figure 3: The initial complexes A corresponding to the regular grammar GE , and an example derivation. Note that the

self-assembly of the derivation could have occurred in any order. Subsequent ligation and denaturing will produce two strands

(top and bottom) from this terminal complex. The codebook C de�nes C0 = CAG and C1 = CTC. We use R3
1.

of the strand sequence, and may require a rule using the start symbol S. Translation by the
codebook can be e�ected by applying a nondeterministic �nite state transducer [Ginsburg]

to LG, yielding a regular language equal to LRT
1
;A;C. 2

Thus, our model for linear self-assembly does not permit very interesting computations. It
should be emphasized that simple extensions might allow for more complex computations.
For example, suppose hairpins appear in A in addition to duplexes. Then, for example, we

could replace the duplex for S (Figure 3) by the hairpin
T

T

T

T

C

GT

A

T T T

C C

G G , and change the codes for 0
and 1 to the Watson-Crick palindromes CCGG and CGCG. Now both the top and bottom
strands code the 0 and 1 sequences; furthermore, after ligation the top and bottom strands
are joined together by the hairpin. Consequently, we generate the set of all palindromes in

which the number of ones is a multiple of four { which is not a regular language! How far
can we push this idea?

2.4 Dendrimer Self-assembly is equivalent to Context-free Languages

It has been observed [Abrahams-Gessel] that dendrimer self-assembly looks formally identical
to context-free grammars. This observation translates very nicely into DNA self-assembly
of branched junctions into tree-like complexes. Therefore, in this section we address the
question of what can be computed by the self-assembly of DNA which obeys Properties

(1-4), (5a), and (6b-d). That is, self-assembly begins with duplexes, hairpins, and 3-armed
junctions with sticky ends, and proceeds at a constant temperature, allowing only permanent
binary events with a single perfectly complementary hybridization site and no intramolecular
hybridization. We note that this form of self-assembly has not been widely studied in the

lab, and that full self-assembly would be limited not only by material but also by geometric
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(steric) interference and volumetric constraints8. Nonetheless, our abstract model allows us
to ask the following precise question: what languages of strings L can be achieved as LRT

1
;A;C

for some choice of T , C, and A where A contains only duplexes, hairpins, and 3-armed
junctions?

An extra complication that immediately arises is the possibility that circular strands may

form. Recall our convention that denature returns \dotted" sequences to represent circular
strands, but didn't specify which permutation of the circle to use. It becomes convenient
to work with equivalence classes of sequences, where �S �= �T if the sequences S and T are
circular permutations of one another. Languages L1 and L2 are deemed equivalent if for

every sequence S in one language, there is an identical or equivalent sequence T in the other
language.

The following9 can be proved by construction:

Theorem 2. (1) For all context-free languages L, there exists a positive integer T , a
codebook C, and a set of duplexes, hairpins, and 3-armed junctions A such that L = LRT1 ;A;C

.

(2) For all positive integers T , codebooks C, and sets of duplexes, hairpins, and 3-armed

junctions A, LRT
1
;A;C is equivalent to a context-free language.
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Figure 4: The initial complexes A corresponding to the regular grammar GF . The codebook C de�nes Cx = CCTT; Cy =

TTCG;Cz = CATT;C( = CACA;C) = TGTG;C+ = ACCA, and C� = TCCT . We use R3
1.

We will sketch the construction used in the proof of (1) { see Figures 4 and 5 for an example.
The construction is similar to that in Theorem 1. Consider a context-free grammar G for
L. Note that there is an equivalent grammar Ĝ which uses rewriting rules of the form
A ! pBqCr where p, q, and r are (possibly null) strings of terminal symbols, and A, B,
and C are single nonterminal symbols (or null). Again, we design su�ciently dissimilar

sequences Si for all the terminal and nonterminal symbols used in Ĝ. For rules of the form
8Consider a tree which branches at every opportunity. It has 2n nodes within n steps of the center; but the volume of space

within n steps grows only as n3.
9We note that this theorem still holds when \duplexes, hairpins, and 3-armed junctions" is replaced by simply \complexes".

That is to say, this is a fully general theorem for self-assembly under RT1 .
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A ! pB or A ! Bp (B not null), we design a duplex as before. For rules of the form
A ! p, we design a hairpin with the sequences for p in the stem. We design a 3-armed

junction for each rule of the form A! pBqCr (B and C not null); it has sticky ends for S 0A,
SB, and SC , and the sequences for p, q, and r are placed on the arms. As before, we design
a blunt-ended duplex for the start symbol S. These complexes make up the initial set of
complexes A. As before, at the appropriate \temperature" T , the terminal complexes will

correspond to derivations in Ĝ, and ligation will convert each complex into a single strand
which encodes the derivation. Processing with the codebook for the terminal symbols will
\erase" the nonterminal sequences, and LRT1 ;A;C

will be exactly L. 2
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Figure 5: An example derivation by self-assembly of the complexes A corresponding to the regular grammar GF . Note that

the self-assembly of the derivation could have occurred in any order, using R3
1. Subsequent ligation will produce a single strand

from this terminal complex. Inset: the three-armed junction corresponding to the generic rewriting rule A! pBqCr.

The proof of (2) also follows the form of the proof of Theorem 1, only now we construct
a context-free grammar G which, loosely speaking, generates sequences corresponding to
backbone paths through complexes in ligate(LRT1 ;A

), where gaps are �lled in with the symbol

3, and where several (but not necessarily all) permutations of each circular strand are given

using �. This language is then passed through a nondeterministic transducer which returns
the strand sequences in fA;C;G; Tg and circular strand sequences in fA;C;G; T; �g. As
before, the �nal strings are produced by another nondeterministic transducer, which this
time translates using the codebook. Thus the �nal language is context-free, and is equivalent

to LRT
1
;A;C. 2
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More intuitively, we can reason that because no intramolecular hybridizations are allowed
by RT

1 , the initial complexes can aggregate only into tree-like structures. No matter how

convoluted the original complexes are, paths through the resulting tree-like structures are
well modeled by context-free languages.

Our model of self-assembly of DNA into tree-like structures has strictly more computational
power than the model of linear self-assembly. However, it is still a far cry from universal
computation. It turns out that when we attempt to model intramolecular interactions, in

the form of cooperative binding sites, a much more powerful model results. We consider a
particular case in the following section.

2.5 Two Dimensional Self-assembly is Universal

To prove that two dimensional self-assembly can be universal, it su�ces to demonstrate a
restricted class which is universal. We review the class of structures introduced in [Winfree],
which are geometrically based on a lattice of double crossover (DX) units of DAO type [Fu].
It was shown in [Winfree] that the self-assembly of DX units can directly mimic the operation

of an arbitrary one dimensional cellular automata system. An example is shown in Figure 6,
where a simple blocked cellular automaton rule (corresponding to the unrestricted grammar
GP of Section 2.1, but without the termination rules) is used to generate a Sierpinski triangle
pattern.

B

W

B

W W

W W W

BB

B

B

B

B

B

B

BB

W

W W

WB
W B B B

B BB W

W

L L R R

S     LRL L

L’

R R
R’

W’ B’

B’ W’

B’ B’

W’ W’

W W

B B W

W W

R

L

Figure 6: An algorithmic pattern in a self-assembled lattice. At the top, the seven initial DX units in A are shown (the black

dot is a visual aid to identify \black" complexes), involving 22 oligonucleotides. The corresponding rewriting rules from GP

are presented in boxes. The units use 12 unique sticky end sequences, denoted by fL;R;
 

B ;
!

B ;
 

W ;
!

Wg and their complements

L0 etc. The L and R sequences are both length T ; the other sequences are length T=2. Upon self-assembly according to RT2 ,

a V-shaped chain of the lower three units is formed due to hybridization of L and R, while the open slots in the initial chain

are �lled by the unique unit whose sticky ends match those on both sides of the slot. In this example, the process continues

inde�nitely. Each strand in ligate(L̂RT
2
;A) represents one or two columns of Pascal's triangle mod 2.
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The model of self-assembly used here follows Properties (1-4), (5b), and (6e), and it is
motivated by additional physical concerns. As shown in Figure 6, the hybridization events

may now involve two binding sites arranged as a slot. Geometry becomes important; only
sticky ends which are close to each other and arranged properly may form a slot where
binding can occur. Physically, one sticky end of an unattached DX unit would hybridize to
one side of the slot, followed shortly by (the now intramolecular) hybridization of the DX

unit's other sticky end to the slot's other binding site. For full computational generality,
it is critical that a DX unit which matches one site in a slot, but not the other site, will
not hybridize to the lattice. Under appropriate conditions, DX units which bind to only
one site in a slot would soon dissociate, while fully matching DX units would bind nearly

irreversibly. We therefore model slot-�lling as a single permanent binary event involving two
binding regions, and T is chosen so that single-site binding will not occur.

We emphasize that this form of DNA self-assembly has not yet been demonstrated experi-
mentally, although we report some preliminary results in Section 3.

We must de�ne new self-assembly rules: RT
2 allows hybridizations allowed by RT

1 , and addi-
tionally allows two-region slot-�lling hybridizations between complexes containing the sub-

graphs shown in Figure 7, so long as the total number of basepair edges in B is at least T .
This rule is meant to model local geometry in complexes; it will be a good model only for
certain structures, including (we believe) the ones used in our construction.

B B

Figure 7: Two allowed slot-�lling hybridizations in R6
2. These graphs represent requires subgraphs of the complexes C1 and

C2 in C1 +B C2 = C3. Other positions of nicks are also allowed, as are other lengths of the duplex regions.

The following can be proved by construction:

Theorem 3. (1) For all recursively enumerable languages L, there exists a positive integer
T , a codebook C, and a set of duplexes and DX units A such that L = LRT1 ;A;C

. (2) For all
positive integers T , codebooks C, and sets of duplexes and DX units A, LRT1 ;A;C

is equivalent

to a recursively enumerable language.

The proof of (1) is based on the constructions in [Winfree]. As cellular automata are capable
of universal computation, for example by directly simulating Turing machines, we conclude
that two dimensional self-assembly is universal. (2) follows because there is an algorithm
for generating all the complexes in LR;A so long as R is computable: keep trying new hy-
bridizations of complexes known to be in the language, and remember the resulting complex.

2

Although universal, one dimensional cellular automata are not often a convenient model
for computing functions of interest, although they are faster and more e�cient than 1-tape
Turing Machines, due to their parallelism.
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2.6 Solving the Hamiltonian Path Problem

As a concrete example of using two dimensional self-assembly for computation, we will solve

the same Hamiltonian Path Problem (HPP) used in [Adleman]. Recall that the problem
is to �nd a path from node 1 to node N which visits every node in G exactly once. Our
algorithms for solving HPP will be based on:

1. Generate all paths from node 1 to node N .

2. In each path, sort the vertices into increasing order.

3. For each path, check that the result is exactly \1; 2; 3; : : : ; N".

4. Output any path which passes the test, if one exists.

In a preparatory step, DNA sequences are designed for the given graph and synthesized.

Steps 1-3 will occur as a single self-assembly step, while Step 4 consists of sequencing circular
DNA of known length.

For the graph used in [Adleman] (shown in Figure 8a), N = 7 and we will require a total of
68 DX units of DAE type. Shown in Figure 8b, units 1 through 20 are responsible for Step 1
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Figure 8: (a) The 7 node graph G. (b) Rule molecules (DAE type) for solving the Hamiltonian Path problem. Sticky ends of

length T=2 are f1; 2; 3; 4; 5; 6; 7;1; C1; C2; C3; C4; C5; C6g and their complements; sticky ends of length T are f1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7g

and their complements. DONE is a special sequence which indicates completion of a lattice. The variables i; a; b; c are used to

concisely represent a multiplicity of rule molecules; italicized variables indicate length T sticky ends. For example, in the lower

set, 15 units are designed from the central schema, one for each pair of incident paths a! b; b! c.

13



(a)

1

1

1

1

1

1

1

1

1

1

1

1

7

7

7

7

7

7

C6

C5

C4

C3

C2

C1

DONE

1
5

7
3 6

2

8
8

1

8

8

8

8
4

4 5

4

4

5 2

2 3

3

2 5

2

2 4

3

3

3

3

3

3

3

3

4

4

4

4

4

6

78

6

6

6

6

6

6

6

5

5

5

5

5

5

2

2

2

2

2

2

2

3

4

(b)

1

1

1

1

7

7

7

7

7

7

C6

7

7

1

1

1

8
8

1
8

8

8

2

2

2 3 4

7
3 6

2

3

3

3 6

6

6

6

6

6

5

5

5 2

25

5

3

4

4 2

42

3 4

8

8

3 4 5

6

7

8

8

6

5

5

4

2 3

3

3

2

2

3 2

2 3

6

5
42

3

Figure 9: Terminal complexes after annealling. Black dots show nicks which will be ligated. (a) The lattice verifying the

Hamiltonian path 1452367. (b) The lattice rejecting the invalid path 123452367.

of the algorithm (the bottom layer in Figure 9a,b); these units are analogous to the oligos
in Adleman's solution10. Units 19 through 61 are responsible for Step 2 of the algorithm;
sorting is accomplished by the Odd-Even Transposition Sort [Knuth]. When the symbol 1
has travelled all the way to the right, the sorting is complete and Step 3 is initiated, using

units 62 through 68.

Each terminal complex either (a) encodes a valid Hamiltonian Path, in which case the
complex is complete (Figure 9a), and ligation cyclizes the outer ring, but not the inner
ring11; or (b) encodes an invalid path, in which case the terminal complex contains un�lled,
open slots (Figure 9b) and will produce no cyclic strands when ligated12. Thus Step 4 can

be achieved by separating cyclic from linear DNA strands (e.g. by 2D gel electrophoresis,

10Adleman's oligos encoded individual edges in the graph, whereas ours encode pairs of edges. Also, knowing that a Hamilto-

nian path in this graph must visit exactly 7 nodes, our units are devised such that only odd-length paths can form completely.
11This can be ensured either by leaving an unmatched base on the sticky ends for interior units, or by phosphorylating only

units which occur on the outer edge.
12Note that if a path visits a node twice, there will be a gap in the \Step 2" portion of the terminal complex; if a path fails

to visit some node, there will be a gap in the \Step 3" portion of the terminal complex.
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by exonuclease digestion, or by a�nity puri�cation based on the DONE sequence) followed
by ampli�cation and sequencing.

Let us briey compare this molecular algorithm to the one used in [Adleman]. To solve a

graph with N nodes and E edges, Adleman used roughly N + E oligos and N laboratory
steps. We would use roughly E2=N +N2+N DX units (each requiring up to 5 strands) and
a constant number of laboratory steps (synthesis, annealing, sequencing)13.

Because two dimensional self-assembly can simulate arbitrary cellular automata, similar
algorithms can be designed for any computational purpose. For example, an N -variable

size s Circuit-SAT problem can be solved using roughly Ns DX units and a constant number
of laboratory steps after synthesis.

2.7 Three Dimensional Self-assembly Augments Computational Power

A trivial corollary of the universality of two-dimensional self-assembly is that if three dimen-
sional structures are allowed, self-assembly is still universal. It is of greater interest if we can
exploit all three dimensions to allow for more e�cient or more reliable computations. We
propose a scheme to do exactly that, again for concreteness using DAO units as our basic

building block. In this section, we will present some physical considerations, but we will not
formally de�ne RT

3 .

2 13

Bb

a A
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Bb

B

A

a

A

B
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b

a

b

2

3

1

(a) (b)

(c)

16 bp12 bp 11 bp

Figure 10: Plan for three dimensional lattice. (a) Three cross-sections through the �nal lattice, corresponding to the three

sections indicated in (b). Circles represent cross-sections through a double helix of DNA; bars indicate which helices are part

of the same DAO unit. (b) Relative angles of �ve DAO units are indicated. For perfect 120� angles, helical twist between 31.5

and 35.5 �= bp is required. (c) Detail of the DAO units. A single DAO unit, with sticky end a complementary to A and b

complementary to B, su�ces to generate the entire lattice. For computations, the sticky ends are indexed s.t. ai binds only Ai
and bi binds Bi.

13How feasible these imagined laboratory steps would be is, of course, an open question. However, once the laboratory

techniques have been debugged, conceivably our algorithm could be carried out in a single day's work { regardless of the

size of the graph (volume permitting). A concern is that, moreso than in Adleman's algorithm, the success of our algorithm

is critically dependent upon ligation yields. For example, if ligation is 80% e�ective, then only 0:830 = 0:1% of the correct

terminal complexes will be fully cyclized in our N = 7 graph. Also, since each path requires a DNA molecule roughly 100 times

larger than the DNA used in Adleman's algorithm, greater reaction volumes will be necessary.
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We begin by noting that the solid angle between two adjacent DAO units is determined by
the length of the linker arm between them. For the planar lattice, we choose a length such

that the angle is approximately 180�. Alternatively, we can choose lengths such that the
angle is near 120�, the appropriate value for a \honeycomb lattice" as shown in Figure 10.

As in the case of the two dimensional lattice of DAO units, computation is brought about
by judicious choice of the sticky end sequences on several DAO units. The three dimensional
lattice thus formed is equivalent to the space-time history of a 2D blocked cellular automata.

The particular incarnation of three dimensional lattice chosen here is clearly not unique,

and it is suggested more as a brain-teaser than as a serious proposal; other geometries are
possible, perhaps having preferable practical characteristics.

2.8 Discussion

We have analyzed the computational power of three di�erent regimes of self-assembly in our
abstract model, and we have speculated on an extension into the self-assembly of a three
dimensional lattice.

The essential construction in the linear case is due to [Adleman] who used it to construct
paths through graphs. [Boneh] and [Winfree] observed that linear self-assembly is capable of

generating regular languages. Here, we state the result in the context of our formal model,
and we show that linear self-assembly of duplexes is limited to regular languages. This point
requires making the distinction between self-assembly processes with and without hairpins,
as shown by the palindromes example. Linear self-assembly has been exploited in many

laboratory experiments { both by molecular biologists and by people interested in molecular
computation { and although its intricacies are not completely understood, there is a wide
foundation of practical experience.

The self-assembly of branched junctions into dendrimer structures seems to be a relatively
unexplored idea. For example, in [Ma] it is observed that identical three-armed junctions

with two complementary sticky ends can cyclize. If cyclization cannot be prevented, many
context-free grammars would be impossible to implement by self-assembly. Another concern
comes from geometry: if the desired tree-like structure contains too many branches, steric
hindrance may prevent further associations from occurring. Thus it is not known to what

extent the technique will be practical.

The self-assembly of DX units into a two-dimensional lattice is also an unconventional idea,
yet to be demonstrated in the laboratory. Some �rst steps in this direction are reported in
the next section of the paper, where the slot-�lling reaction is explored.

It is interesting to observe that the Chomsky Hierarchy of languages, developed originally for
the study of human languages, also arises naturally in the study of self-assembling structures.

The progression from regular to context-free to recursively enumerable languages can be seen
to parallel both (a) the progression from linear to dendrimer to planar lattice structures, and
(b) the progression from \rule molecules" with e�ectively one input and one output, to those
with one input and two outputs, to those with two inputs and two outputs.

One should note that all the previous arguments ignored the kinetic framework implicit

in the process of annealing that we originally consider. Speci�cally, we expect that longer
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complementary regions hybridize �rst. Annealing could be represented in our model as
recursive computation of languages:

Lanneal
R1;A;C

= C(denature(ligate(L̂R1
1
;L̂
R2
1
;L̂
R3;:::

)))

The kinetic aspects of this model of linear self-assembly may themselves be expoitable for
computation. Intermolecular interactions other than the ones considered here might also

provide computational advantages. Issues of concentrations and �nite supply of DNA must
also go into any more practical analysis.

3 Experimental Investigations

The above considerations only point to the possibility of algorithmically-patterned lattices
of DNA. There are two major issues to be investigated experimentally. The �rst is whether
homogeneous lattices will form; i.e., whether the geometric structure itself will self-assemble.

The second issue is whether, in the presence of multiple units in solution, the logically correct
unit will hybridize in each slot. This competitive process for �lling each slot is essential for
computation, as a single error can propagate throughout the entire computation. Ultimately,
error rates will determine the size of lattice in which reliable computation may be performed.

We have begun an investigation of the second issue. We �rst build a model molecular

complex, called ABC, which contains a single slot and no other sticky ends. ABC is composed
of two double crossover molecules, A and C, and a duplex linker B. ABC is created by ligating
eight oligonucleotides; the �nal structure contains four hybridized strands. Rather than
test the assembly of a double crossover unit into ABC's slot, we model the unit by a linear
duplex \linker", called D. When ABC is properly hybridized to D, we call the complex ABCD.

Completely ligated, ABCD is a complex catenane with four interlocked circles. To test the
speci�city of the hybridization, we also have a mismatched linker D', which is perfectly
complementary to only one of the sticky ends in the slot. We expect that ABCD' cannot be
completely ligated, due to the mismatch, and hence ABCD' does not form a catenane. These

molecular complexes are diagramed in Figure 11.

Experimentally, we must establish that the double crossover molecules A and C form prop-
erly upon annealing their component strands. As developed in [Fu], where the details of
hybridization were probed by more extensive structural characterization, a good indication
of proper association is a single band of mobility in a non-denaturing gel appropriate for

the topology and molecular weight. The ligation products ABC, ABCD, and ABCD' (by which
we mean whatever it is we get when we intend to make structures ABC, ABCD, and ABCD'
respectively) are examined both in non-denaturing and denaturing gels; in the former we are
looking for a single band of approximately the correct apparent molecular weight, while in

the latter we are looking for linear strands of the lengths predicted for ligation. Ligation of
double crossover molecules has previously been shown to be well-behaved [Li]. Topologically
closed structures, such as ABCD, can be assayed by treating with an exonuclease [Ma]. Al-
though none of these tests is absolutely rigorous, together they may give us con�dence that
the reactions are proceeding as predicted.
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Figure 11. Sequences and Structures for ABCD.

A1 = TAATGTGCCTGACCGCCTTACTTTTGTAAGGCGGTCACCGAATTCCGACTTTTGTCGGAATTCGGACGCCTAACGTGGACACCGCGAC

A2 = GTAAGCTTCCTGTCCACGTTAGGCGTGGCACATTAGTCGCGGACTTAGACAA

A3 = GGATGGTTGTCTAAGTGGAAGCTTACCGCATC

B1 = CCATCCAGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGGCAGTAC

B2 = CCGATTCAATCAAGGTTTACACTACCGTGAGTTACGCAGACGTGTCAACGCT

C1 = TGCATCTGGACCTCGAGACTTTTGTCTCGAGGTGGTTCGCCGCTTTTGCGGCGAACCTGAACACGAACGTGGTGGATCAC

C2 = GAGTCGACGGACCACGTTCGTGTTCACCAGATGCAGTGATCCTGCATATGAC

C3 = CTGAGCGTCATATGCACCGTCGACTCGTACTG

D1 = GCTCAGCCGTGCTAATCCAACTCGGTACCTACAGATACGATGGACTGGTTAGATAGGTGATGCG

D2 = ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG

D1' = GCTCAGCCGTGCTAATCCAACTCCTGCAGTACAGATACGATGGACTGGTTAGATAGGTCAACAG

D2' = ACCTATCTAACCAGTCCATCGTATCTGTACTGCAGGAGTTGGATTAGCACGG

Complex ABC: A B C

TTGTCGGAATTCGG-ACGCCTAAG CACCTGT-CCTTCGAATG CAGTATACGT-CCTAGTG TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC GTGGACA GGAAGCTTAC-CGCATC CTGAGC-GTCATATGCA GGATCAC ACGTAGACC TGGAGCTCTGTT

TTGTAAGGCGGTCA GGCACATTA CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT AGCACAAGT-CCAAGCGGCGTT

Complex ABCD: A D/B C

TTGTCGGAATTCGG-ACGCCTAAG CACCTGT-CCTTCGAATG GCGTAG-TGGATAGATTGGTCAGGTAGCATAGACATCCATGGCTCAACCTAATCGTGCC-GACTCG CAGTATACGT-CCTAGTG TGCATCTGG-ACCTCGAGACTT

TTCAGCCTTAAGCC TGCGGATTC GTGGACA GGAAGCTTAC-CGCATC ACCTATCTAACCAGTCCATCGTATCTGTAGGTACCGAGTTGGATTAGCACGG CTGAGC-GTCATATGCA GGATCAC ACGTAGACC TGGAGCTCTGTT

TTGTAAGGCGGTCA GGCACATTA CAGCGCC TGAATCTGTT-GGTAGG TCGCAACTGTGCAGACGCATTGAGTGCCATCACATTTGGAACTAACTTAGCC GTCATG-CTCAGCTGCC TGGTGCA TCGTGTTCA GGTTCGCCGCTT

TTCATTCCGCCAGT-CCGTGTAAT GTCGCGG-ACTTAGACAA CCATCC-AGCGTTGACACGTCTGCGTAACTCACGGTAGTGTAAACCTTGATTGAATCGG-CAGTAC GAGTCGACGG-ACCACGT AGCACAAGT-CCAAGCGGCGTT
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Figure 11: Sequences are written 5' to 3'. 3' ends are denoted by arrows in the diagrams, and strand labels are near 5' ends.

Lengths are measured in nucleotides. Above, sequence details are given along with schematic representations of ABC and ABCD

(not ligated). Below, more geometric detail is sketched for A, B, C, D, and ABCD (ligated). Diagrams illustrate intended structures

only.

3.1 Materials and Methods

Sequence Design. The twelve strands required for A, B, C, D, and D' were designed by applying the principles

of sequence symmetry minimization [Seeman], where the design process ensures that there are no comple-

mentary regions between strands, except as desired. In short, each double crossover molecule is designed

by creating sequences appropriate for two asymmetric Holliday junctions, then juxtaposing these sequences

as appropriate for a four-stranded DAO, adding hairpin sequences and re-phasing A1 and C1 to put the

nick in the central region of the DAO. A1's hairpin regions are longer than C1's to allow A1 and C1 to be

distinguished on gels. The lengths of the linkers B and D were chosen such that both DAO units should be

nearly coplanar according to an estimated 10.5 base pairs per double helical full turn. Exact sequences are

given in Figure 11.

Synthesis and Puri�cation of DNA. All strands were synthesized on an Applied Biosystems 380B automatic

DNA synthesizer using routine phosphoramidite procedures [Caruthers]. DNA strands were puri�ed by dena-

turing polyacrylamide gel electrophoresis. DNA concentrations were estimated by OD260. All strands were

phosphorylated by T4 Polynucleotide Kinase (U.S. Biochemical or Promega), followed by phenol extraction

and ethanol precipitation. DNA was not radiolabeled.

Formation of Hydrogen-Bonded Complexes. Complexes A, B, C, and D were formed by mixing stoichiometric

quantities of each strand at concentrations near 1�M in 1x USB T4 DNA Ligase bu�er (U.S. Biochemical:

66 mM Tris�HCl (pH 7.6), 6.6 mM MgCl2, 10 mM DTT, 66 �M ATP; or Promega: 30 mM Tris�HCl (pH
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7.8), 10 mM MgCl2, 10 mM DTT, 500 �M ATP). These solutions were annealed for two hours from 80�C

down to room temperature.

Formation of Covalently Bonded Complexes. Complexes AB, BC, ABC, ABCD, and ABCD' were formed by mixing

stoichiometric quantities of annealed A, B, C, and D', followed by D after 20 minutes. Up to 50 units of T4

DNA Ligase (U.S. Biochemical or Promega) were added and solutions were incubated in a 16�C water bath

for 2 or 8 hours. One sample of ABCD was further treated by adding 1

10

th

volume 10x USB Exonuclease III

bu�er (U.S. Biochemical) and 100 units Exonuclease III (U.S. Biochemical), incubated at 37�C for 1 hour.

Prior to being loaded in gels, solutions for gels (a) and (b) were heated to 80�C and again annealed to

room temperature, to denature proteins and re-form hydrogen-bonded complexes. For gels (c), ligation was

followed by phenol extraction and ethanol precipitation, then samples were heated to 90�C for 5 minutes

prior to being loaded.

Denaturing Polyacrylamide Gels. Denaturing gels contain 8.3 M urea and 8% acrylamide (19:1 acry-

lamide:bisacrylamide). The running bu�er is TBE (89 mM Tris�HCl (pH 8.0), 89 mM boric acid, 2 mM

EDTA). The sample bu�er contains 0.1% bromphenol blue and xylene cyanol FF tracking dyes in 80% for-

mamide with 10 mM EDTA. Samples are heated at 80�C for 5 minutes immediately prior to loading. Gels

are run at approximately 60 V/cm and 35 Watts, then soaked in StainsAll dye and digitized by DeskScan

II on an Apple Macintosh.

Non-denaturing Polyacrylamide Gels. Non-denaturing gels contain 12.5 mMMg++ and 8% acrylamide (19:1

acrylamide:bisacrylamide), 0.75 mm thick. The running bu�er is TAE/Mg++ (40 mM Tris�HCl (pH 8.0), 20

mM acetic acid, 2 mM EDTA, 12.5 mM magnesium acetate). The loading bu�er contains 0.02% bromphenol

blue and xylene cyanol FF tracking dyes and 5% glycerol in ligation bu�er. Gels are run at approximately

16 V/cm and 10 Watts at 4�C, then soaked in StainsAll dye and digitized by DeskScan II on an Apple

Macintosh.

3.2 Results

Formation of Complexes.

Figures 12a and 12b show several stages in the formation of ABCD. On the non-denaturing gel,

the duplexes and double crossover molecules A, B, C, and D form clean bands (a, lanes 1-4)
which migrate with approximately the same mobility as equivalent molecular weight duplex
DNA. Ligation products AB and BC also show clean bands (a, lanes 9-10). Ligation product
ABC appears as the major band in its lane (a, lane 8); another band appears at the level of

AB and BC indicating incomplete ligation. Ligation product ABCD also appears, we believe, as
the major band in its lane (a, lanes 7 and 5); a slower unidenti�ed band also appears. After
exonuclease treatment, the major band of ligation product ABCD is still apparent, though
diminished (a, lane 6).

On the denaturing gel, we obtain further evidence of ligation activity by observing the lengths
of newly created oligonucleotides. Lanes 1-4 can be used as markers for the lengths of most of
the original oligonucleotides: A1 (88), A2 (52), B1 (64), B2 (52), C1 (80), C2 (52), D1 (64), D2

(52). A3 and C3, both 32 nucleotides, ran o� the gel. Lane 10, product AB, shows the expected
formation of A2B1 (116) and B2A3 (84); lane 9, product BC, likewise shows the formation of
B1C2 (116) and C3B2 (84); and lane 8, product ABC, shows the expected formation of A2B1C2
(168) and C3B2A3 (116). Lanes 5 and 7, product ABCD, contain only three signi�cant bands:
A1 (88), C1 (80), and a band which migrates slower than a 2000 nucleotide strand, according

to the marker (lane 11). This slow band is exonuclease-resistant (lane 6). We therefore
conclude that the band contains the catenane A2B1C2D1:A3D2C3B2; i.e., ABCD minus the A1
and C1 loops, which apparently were not ligated. Double crossover molecules with two nicks
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Figure 12. Formation and Speci�city of ABCD.

(a) (b) (c)

Figure 12: Numbers at right indicate estimated positions for expected products, consistent with the marker lane. (a) Non-

denaturing gel electrophoresis, and (b) Denaturing gel electrophoresis. Lane 1: A (172 nucleotides). Lane 2: B (116 nucleotides).

Lane 3: C (164 nucleotides). Lane 4: D (116 nucleotides). Lane 5: Product ABCD with ligase. ABCD contains 568 nucleotides.

Lane 6: Product ABCD with ligase and exonuclease. Lane 7: product ABCD with ligase. Lane 8: Product ABC with ligase. ABC

contains 452 nucleotides. Lane 9: Product BC with ligase. BC contains 280 nucleotides. Lane 10: Product AB with ligase. AB

contains 288 nucleotides. Lane 11: 100 base-pair double-stranded ladder. (c) Denaturing gel electrophoresis. All lanes contain

A:B:C in 1:1:1 stoichiometry, plus various concentrations of D:D'. Lane 1{9: D:D' = 0:1, 1:0, 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64.

Lanes 10{13: D:D' = 0:20, 1:1, 1:0, 0:0. (Note: the �rst gel was slightly ripped during staining.)

have been shown to be stable [Zhang], suggesting that the nicks in A1 and C1 should not
signi�cantly a�ect the formation or stability of A or C.

Speci�city of Reaction.

Figure 12c shows the results of a preliminary experiment investigating the e�ectiveness of

D vs D' in �lling the slot created by ABC. Lane 13 contains ABC, and thus has primary
bands for A2B1C2 (168) and C3B2A3 (116). Lanes 2 and 12 show ligation of ABCD in 1:1:1:1
stoichiometry. The ligation apparently was not as complete as in 12b, as several bands of
\partial products" are observed. The fastest band is appropriate for linear A3D2C3B2 (168)

and cyclical permutations; the next band is appropriate for linear B1C2D1 or D1A2B1 (180);
the next major band is appropriate for A2B1C2D1 (232) and cyclical permutations. The band
below c is known from other gels (not shown) to be exonuclease-resistant, and the two cyclic
molecule bands are thought to be an indicator of the formation of ABCD. Lanes 1 and 10
show ligation of ABC with respectively an equimolar amount or a 20-fold excess of D'. We

again see the linear bands of lengths 168, 180, and 232, while bands at 136 (D2C3B2) and 116
(C3B2A3 and A3D2C3) become signi�cant. Critically, the slow circular products are missing,
suggesting that D' was only ligated on the side where it matches the slot's sticky end. Lanes
11 and 3{9 show ligation of one unit of ABC with an x-fold excess of D' and equimolar D,

where x ranges from 1 to 64. In every case, the closed molecule c is formed, indicating that
ABCD is still formed in the presence of competing D'. Additional bands also appear, possibly
due to unexpected interactions involving D1 or D2.

3.3 Discussion

We interpret these results as follows. First, we believe that we are making the ABCD complex,
with the caveat that we believe the nicks in A1 and C1 are not being sealed. This suggests
that (1) in ABC, the linker B is properly spaced such that double crossover molecules A and

C are roughly coplanar, and (2) that in each double crossover molecule, the two helical axes
are also roughly coplanar. Second, we observe that D, which matches the sticky ends on both
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sides of ABC's slot, outcompetes D', which matches only on one side, even when D' is 64-fold
more abundant than D. We plan to quantitate the thermodynamics of this reaction in the

near future.

The experiments reported here bear on the two-dimensional self-assembly process postulated
in Section 2.2. These experiments are meant to model a single slot-�lling step during the
self-assembly of a two dimensional lattice. In our experiments, this fundamental step can
occur, and with some speci�city. These results encourage us to examine this step in closer

detail in the future, as well as to attempt the self-assembly of an entire sheet. We hope that
the self-assembly of an algorithmically patterned sheet of DNA can eventually be veri�ed by
TEM or AFM microscopy.

4 Conclusions

The self-assembly of molecules can correspond to several well known computational classes
up to and including universal computation. This suggests that external processing is not an

intrinsic element of molecular computation; computationally universal \one-pot" reactions
seem plausible. We have shown some encouraging but preliminary experimental investiga-
tions into the fundamental computational step in our two dimensional self-assembly model.
The generality of the approach used here suggests that the potential for universal compu-

tation may be widespread among self-assembly processes in nature. In addition to being
interesting in its own right as a universal mechanism, it may be worth considering whether
the self-assembly processes described here could be useful technologically, perhaps as part of
an approach to nanotechnology [Li].
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