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Abstract

We present a new method for calculating approximate marginals for probability distributions
defined by graphs with cycles, based on a Gaussian entropy bound combined with a semidefinite
outer bound on the marginal polytope. This combination leads to a log-determinant maximiza-
tion problem that can be solved by efficient interior point methods [13]. As with the Bethe
approximation and its generalizations [18], the optimizing arguments of this problem can be
taken as approximations to the exact marginals. In contrast to Bethe/Kikuchi approaches,
our variational problem is strictly convex and so has a unique global optimum. An additional
desirable feature is that the value of the optimal solution is guaranteed to provide an upper
bound on the log partition function. Such upper bounds are of interest in their own right (e.g.,
for parameter estimation, large deviations exponents, combinatorial enumeration). Finally, we
show that taking the zero-temperature limit of our log-determinant relaxation recovers a class
of well-known semidefinite relaxations for integer programming [e.g., 6].

Keywords: Graphical models; Markov random field; factor graph; approximate inference; sum-product

algorithm; semidefinite constraints; determinant maximization; variational method; marginal polytope.

1 Introduction

Given a probability distribution defined by a graphical model (e.g., Markov random field, factor
graph), one important problem is the computation of marginal distributions. Although highly
efficient algorithms exist for trees, exact solutions are prohibitively complex for more general graphs
of any substantial size. This difficulty motivates the use of algorithms for computing approximations
to marginal distributions, a problem to which we refer as approximate inference. One widely-used
algorithm is the belief propagation or sum-product algorithm [11]. As shown by Yedidia et al. [18],
it can be interpreted as a method for attempting to solve a variational problem wherein the exact
entropy is replaced by the Bethe approximation. Moreover, Yedidia et al. proposed extensions to
the Bethe approximation based on clustering operations; such generalizations have been further
explored in subsequent work by various researchers [e.g., 9, 10, 15].
An unattractive feature of the Bethe approach and its extensions is that with certain excep-

tions [e.g., 10, 9], the associated variational problems are typically not convex, thus leading to
algorithmic complications, and also raising the possibility of multiple local optima. Secondly, in
contrast to other variational methods (e.g., mean field [7]), the optimal values of Bethe-type vari-
ational problems fail to provide bounds on the log partition function. This function arises in
various contexts, including approximate parameter estimation, large deviations, and combinatorial
enumeration, so that such bounds are of interest in their own right.
In previous work [14], we derived a class of upper bounds on the log partition function via vari-

ational problems specified by “convexified” Bethe/Kikuchi entropy approximations. This paper
introduces a new class of upper bounds based on solving a log-determinant maximization problem.
Our derivation relies on a Gaussian upper bound on the discrete entropy of a suitably regularized
random vector, and a semidefinite outer bound on the set of valid marginal distributions. The
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resulting variational problem has a unique optimum that can be found by efficient interior point
methods [13]. As with the Bethe/Kikuchi approximations and sum-product algorithms, the opti-
mizing arguments of this problem can be taken as approximations to the marginal distributions of
the underlying graphical model. Moreover, taking the “zero-temperature” limit recovers a class of
well-known semidefinite programming relaxations for integer programming problems [e.g., 6].

2 Problem set-up

We consider an undirected graph G = (V,E) with n = |V | nodes. Associated with each vertex
s ∈ V is a random variable xs taking values in the discrete space X = {0, 1, . . . ,m− 1}. We let
x = {xs | s ∈ V } denote a random vector taking values in the Cartesian product space X n. Our
analysis makes use of the following exponential representation of a graph-structured distribution
p(x). For some index set I, we let φ = {φα | α ∈ I} denote a collection of potential functions
associated with the cliques of G, and let θ = {θα | α ∈ I} be a vector of parameters associated
with these potential functions. The exponential family determined by φ is the following collection:

p(x; θ) = exp
{∑

α

θαφα(x)− Φ(θ)
}

(1a)

Φ(θ) = log
∑

x∈Xn

exp
{∑

α

θαφα(x)
}

(1b)

Here Φ(θ) is the log partition function that serves to normalize the distribution. In a minimal repre-
sentation, the functions {φα} are affinely independent, and d = |I| corresponds to the dimension of
the family. For example, one minimal representation of a binary-valued random vector on a graph
with pairwise cliques is the standard Ising model, in which φ = {xs | s ∈ V } ∪ { xsxt | (s, t) ∈ E}.
Here the index set I = V ∪ E, and d = n+ |E|. In order to incorporate higher order interactions,
we simply add higher degree monomials (e.g., xsxtxu for a third order interaction) to the collection
of potential functions. Similar representations exist for discrete processes on alphabets with m > 2
elements [e.g., 1].

2.1 Duality and marginal polytopes

It is well-known that Φ is convex in terms of θ, and strictly so for a minimal representation [1].
Accordingly, it is natural to consider its conjugate dual function, which is defined by the relation:

Φ∗(µ) = sup
θ∈Rd

{〈µ, θ〉 − Φ(θ)}. (2)

Here the vector of dual variables µ is the same dimension as exponential parameter θ (i.e., µ ∈ Rd).
It is straightforward to show that the partial derivatives of Φ with respect to θ correspond to
cumulants of φ(x); in particular, the first order derivatives are marginals:

∂Φ

∂θα
(θ) =

∑

x∈Xn

p(x; θ)φα(x) = Eθ[φα(x)]. (3)

In order to compute Φ∗(µ̂) for a given µ̂, we take the derivative with respect to θ of the quantity
within curly braces in equation (2). Setting this derivative to zero and making use of equation (3)
yields defining conditions for the vector θ̂ attaining the optimum in equation (2):

µ̂α = E
θ̂
[φα(x)] ∀ α ∈ I (4)
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Since equation (4) involves taking an expectation, the dual variables µ have a natural interpretation
as mean parameters. For example, given the standard minimal representation of the Ising model,
the dual variables correspond to particular values of particular marginals (e.g., E

θ̂
[xs] = p(xs = 1; θ̂)

when X = {0, 1}.)
In order to calculate an explicit form for the conjugate dual Φ∗, we substitute the relation in

equation (4) into the definition of Φ∗, thereby obtaining:

Φ∗(µ̂) = 〈µ̂, θ̂〉 − Φ(θ̂) =
∑

x∈Xn

p(x; θ̂) 〈θ̂, φ(x)〉 − Φ(θ̂) =
∑

x∈Xn

p(x; θ̂) log p(x; θ̂) (5)

This relation establishes that the value of the conjugate dual Φ∗(µ̂) is given by the negative entropy
of the distribution p(x; θ̂), where the pair θ̂ and µ̂ are dually coupled via equation (4). An additional
consequence is that the dual parameters µ can be interpreted as realizablemarginals; more precisely,
they must belong to the set:

MARG(G;φ) = { µ ∈ Rd
∣∣ ∑

x∈Xn

p(x; θ) φ(x) = µ for some θ ∈ Rd} (6)

Note that this set is equivalent to the convex hull1 of the finite collection of vectors {φ(x) | x ∈ X n};
consequently, the Minkowski-Weyl theorem [12] guarantees that it can be characterized by a finite
number of linear inequality constraints. We refer to this set as the marginal polytope associated
with the graph G and the potentials φ.
Since Φ is lower semi-continuous, taking the conjugate twice recovers the original function [12];

applying this fact to Φ∗ and Φ, we obtain the following relation:

Φ(θ) = max
µ∈MARG(G;φ)

{
〈θ, µ〉 − Φ∗(µ)

}
(7)

Moreover, we are guaranteed that the optimum is attained uniquely at the exact marginals µ = {µα}
of p(x; θ). This variational formulation plays a central role in our development in the sequel.

2.2 Challenges with the variational formulation

There are two difficulties associated with the variational formulation (7). First of all, observe that
the (negative) entropy Φ∗, as a function of only the local marginals, is implicitly defined; indeed, it
is typically impossible to specify an explicit form for Φ∗. Key exceptions are trees and hypertrees,
for which the entropy is well-known to decompose into a sum of local entropies defined by local
marginals on the (hyper)edges [4]. Secondly, for a general graph with cycles, the marginal polytope
MARG(G;φ) is defined by a number of inequalities that grows rapidly in graph size [e.g., 5]. Trees
and hypertrees again are important exceptions: in this case, the junction tree theorem [e.g., 4]
provides a compact representation of the associated marginal polytopes.
The Bethe approach (and its generalizations) can be understood as consisting of two steps: (a)

replacing the exact entropy −Φ∗ with a tree (or hypertree) approximation; and (b) replacing the
marginal polytope MARG(G;φ) with constraint sets defined by tree (or hypertree) consistency
conditions. However, since the (hyper)tree approximations used do not bound the exact entropy,
the optimal values of Bethe-type variational problems do not provide a bound on the value of the
log partition function Φ(θ). Requirements for bounding Φ are both an outer bound on the marginal
polytope, as well as an upper bound on the entropy −Φ∗.

1Strictly speaking, the definition in equation (6) restricts the probability distribution specifying the convex com-
bination to a member p(x; θ) of the exponential family. However, it can be shown that (the closure of) MARG(G;φ)
thus defined is equivalent to the convex hull taken over all probability distributions.
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3 Log-determinant relaxation

In this section, we state and prove a set of upper bounds based on the solution of a variational
problem involving determinant maximization and semidefinite constraints. Although the ideas
and methods described here are more generally applicable, for the sake of clarity in exposition
we focus here on the case of a binary vector x ∈ {−1,+1}n of “spins”. It is also convenient to
define all problems with respect to the complete graph Kn (i.e., fully connected). We use the
standard (minimal) Ising representation for a binary problem, in terms of the potential functions
φ = {xs | s ∈ V } ∪ {xsxt | (s, t)}. On the complete graph, there are d = n +

(
n
2

)
such potential

functions in total. Of course, any problem can be embedded into the complete graph by setting to
zero a subset of the {θst} parameters. (In particular, for a graph G = (V,E), we simply set θst = 0
for all pairs (s, t) /∈ E).

3.1 Outer bounds on the marginal polytope

We first focus on the the marginal polytope MARG(Kn) of valid dual variables {µs, µst}, as defined
in equation (6). In this section, we describe a set of semidefinite and linear constraints that any
valid dual vector µ ∈ MARG(Kn) must satisfy.

3.1.1 Semidefinite outer bounds

Given an arbitrary vector µ ∈ Rd, consider the following (n+ 1)× (n+ 1) matrix:

M1[µ] :=




1 µ1 µ2 · · · µn−1 µn
µ1 1 µ12 · · · · · · µ1n

µ2 µ21 1 · · · · · · µ2n
...

...
...

...
...

...

µn−1
...

...
...

... µn,(n−1)

µn µn1 µn2 · · · µ(n−1),n 1




(8)

The motivation underlying this definition is the following: suppose that the given dual vector µ
actually belongs to MARG(Kn), in which case there exists some distribution p(x; θ) such that
µs =

∑
x p(x; θ) xs and µst =

∑
x p(x; θ) xsxt. Thus, if µ ∈ MARG(Kn), the matrix M1[µ] can be

interpreted as the matrix of second order moments for the vector (1, x), as computed under p(x; θ).
(Note in particular that the diagonal elements are all one, since x2

s = 1 when xs ∈ {−1,+1}.) Since
any such moment matrix must be positive semidefinite,2 we have established the following:

Lemma 1 (Semidefinite outer bound). The binary marginal polytope MARG(Kn) is contained
within the semidefinite constraint set:

SDEF1(Kn) =
{
µ ∈ Rd

∣∣ M1[µ] º 0
}

(9)

This semidefinite relaxation can be further strengthened by including higher order terms in the
moment matrices, as described by Lasserre [e.g., 8]. For any integer 1 ≤ k ≤ n, let Ak denote the
set of all subsets of the vertex set with at most k elements (including the empty set). Associated
with each such Ak is a random vector with |Ak| =

∑k
i=0

(
n
i

)
elements, defined as

XAk
:=

{∏

s∈S

xs | S ∈ Ak

}
.

2To be explicit, letting x̃ = (1, x), then for any vector a ∈ Rn+1, we have aTM1[µ]a = aT E[x̃x̃T ]a = E[‖aT x̃‖2],
which is certainly non-negative.
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As a particular example of these definitions, we have A1 = {∅, {1}, . . . , {n}}, so that XA1
simply

reduces3 to (1,x).
In analogy to M1[µ], we then consider a |Ak| × |Ak| matrix Mk[µ] of second order moments as-

sociated with the vectorXAk
. In particular, the rows and columns ofMk[µ] are indexed by subsets of

Ak, and the (S, T ) entry can be interpreted as a second order moment µST = E[(
∏

s∈S xs) (
∏

t∈T xt)].
Note that for k > 1, the matrix Mk[µ] will involve not only the singleton and pairwise moments
{µs, µst} of x, but also higher order moments (e.g., µstu = Eθ[xsxtxu]).

Example 1 (Higher-order semidefinite constraint). To provide a simple illustration, suppose
that n = 3, so that

XA2
= {1, x1, x2, x3, x1x2, x1x3, x2x3}

In this case, the matrix M2[µ] is 7× 7, and takes the following form:

M2[µ] =




1 µ1 µ2 µ3 µ12 µ13 µ23

µ1 1 µ12 µ13 µ2 µ3 µ123

µ2 µ12 1 µ23 µ1 µ123 µ3

µ3 µ13 µ23 1 µ123 µ1 µ2

µ12 µ2 µ1 µ123 1 µ23 µ13

µ13 µ3 µ123 µ1 µ23 1 µ12

µ23 µ123 µ3 µ2 µ13 µ12 1




In calculating the form of M2[µ] = Eθ[XA2
XT

A2
], we have frequently used the fact that x2

s = 1
whenever xs ∈ {−1,+1} in order to simplify the moment calculations. For example, in calculating
the (5, 7) entry, we used the reduction Eθ[(x1x2) (x2x3)] = Eθ[x1x3] = µ13.

Now suppose that the moment vector µ = {µs, µst} belongs to MARG(Kn). In this case, there
must exist a distribution p(x; θ) such that µs = Eθ[xs] and µst = Eθ[xsxt]. Of course, we can also
consider the higher order moments µST for other pairs of subsets S, T ∈ Ak\A1, and use them (in
conjunction with {µs, µst}) to form the matrix Mk[µ]. This matrix must be positive semidefinite,
since it is formed of moments.
With this intuition, we define for each k ∈ {1, . . . , n} a constraint set of the following form:

SDEFk(Kn) =

{
{µs, µst} ∈ Rd

∣∣ ∃ (µST , S, T ∈ Ak\A1}) s. t Mk[µ] º 0

}
(10)

In words, SDEFk(Kn) consists of those vectors {µs, µst} ∈ Rd for which there exists an extended
sequence {µST , S, T ∈ Ak\ A1} of real numbers such that the matrixMk[µ] is positive semidefinite.
Note that when k = 1, the definition (10) agrees with our earlier specification of SDEF1(Kn) in
Lemma 1. Moreover, from the reasoning given above, we conclude that each SDEFk(Kn) is an outer
bound on the marginal polytope MARG(Kn). In addition, these outer bounds become tighter as
k increases — viz.:

SDEF1(Kn) ⊇ SDEF2(Kn) · · · ⊇ SDEFn(Kn) = MARG(Kn). (11)

The nested condition follows because Mk[µ] is a submatrix of the larger matrix Mk+1[µ] for all k.

3Our convention is that
∏

s∈∅ xs ≡ 1.
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3.1.2 Additional linear constraints

It is straightforward to augment these semidefinite constraints with additional linear constraints.
In the case of a binary random vector, a large number of such constraints are known [5]. Here
we focus in particular on two classes of constraints, referred to as rooted and unrooted triangle
inequalities by Deza and Laurent [5], that are of especial relevance in the graphical model setting.

Pairwise edge constraints: Consider the mean parameters associated with each pair of random
variables (xs, xt) — namely, µs, µt and µst. It is natural to require that this subset of mean
parameters specify a valid pairwise marginal distribution over (xs, xt). Letting {a, b} take values
in {−1,+1}2, consider the set of four linear constraints of the following form:

1 + aµs + b µt + ab µst ≥ 0. (12)

As we show in Appendix A.1, these constraints are necessary and sufficient to guarantee the ex-
istence of a consistent pairwise marginal. Thus, there is an important connection to graphical
models; in particular, by the junction tree theorem [4], this pairwise consistency guarantees that
the constraints of equation (12) provide a complete description of the binary marginal polytope for
any tree-structured graph. Moreover, for a general graph with cycles, they are equivalent to the
tree-consistent constraint set used in the Bethe variational problem [18].

Triplet constraints: Of course, it is natural to extend local consistency to triplets {xs, xt, xu}
(and even more generally, to higher order subsets). For the triplet case, consider the following set
of constraints (and permutations thereof) among the pairwise mean parameters {µst, µsu, µtu}:

µst + µsu + µtu ≥ −1 (13a)

µst − µsu − µtu ≥ −1 (13b)

In Appendix A.2, we prove that these constraints, in conjunction with the pairwise constraints (12),
are necessary and sufficient to ensure that the collection of mean parameters {µs, µt, µu, µst, µsu, µtu}
uniquely determine a valid marginal over the triplet (xs, xt, xu). Once again, by applying the junc-
tion tree theorem [4], we conclude that the constraints (12) and (13) provide a complete charac-
terization of the binary marginal polytope for hypertrees of width two. It is worthwhile observing
that this set of constraints is equivalent to those that are implicitly enforced by any Kikuchi ap-
proximation with clusters of size three (when applied to a binary problem).

3.2 Gaussian entropy bound

We now turn to the task of upper bounding the entropy. Our starting point is the familiar interpre-
tation of the Gaussian as the maximum entropy distribution subject to covariance constraints [see
3]:

Lemma 2. The (differential) entropy h(x̃) of any continuous random vector x̃ is upper bounded
by the entropy 1

2 log det cov(x̃) +
n
2 log(2πe) of a Gaussian with matched covariance.

Of interest to us is the discrete entropy of a discrete-valued random vector x ∈ {−1,+1}n,
whereas the Gaussian bound of Lemma 2 applies to the differential entropy of a continuous-valued
random vector. Therefore, we need to convert our discrete vector to the continuous space. In order
to do so, we define a new continuous random vector via x̃ = 1

2x+ u, where u is a random vector
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−1/2 +1/2 −1/2 +1/2

(a) (b)

Figure 1. Illustration of the smoothing procedure. (a) Original probability mass function with
impulses at {− 1

2
,+ 1

2
}. (b) Transformed version, where the impulses are spread out with a uniform

random variable on [− 1
2
, 1

2
]. By construction, the (differential) entropy of the continuous random

variable in (b) is equivalent to the discrete entropy of the original one in (a).

independent of x, with each element independently and identically distributed4 as us ∼ U [−
1
2 ,

1
2 ].

This construction is illustrated for the scalar case in Figure 1. The motivation for rescaling x by 1
2

is to pack the boxes as tightly together as possible.

Lemma 3. We have h(x̃) = H(x), where h and H denote the differential and discrete entropies
of x̃ and x respectively.

Proof. Letting D = {x̃ ∈ Rn | p(x̃) > 0 }, then we have h(x̃) = −
∫
D p(x̃) log p(x̃)dx̃. By

construction, D can be decomposed into a disjoint union of hyperboxes ∪eB(e) of unit vol-
ume, one for each configuration e ∈ {− 1

2 ,+
1
2}

n. Accordingly, we write the differential entropy as
h(x̃) = −

∑
e

∫
B(e) p(x̃) log p(x̃)dx̃. Note that the quantity p(x̃) log p(x̃) is equal to the constant

P (e) logP (e) over each hyperbox, where P (e) is the probability of the discrete configuration e ∈
{−1

2 ,
1
2}

n. Accordingly, we can write the differential entropy as h(x̃) = −
∑

e P (e) logP (e) vol(B(e)),
which is seen to be equal to H(x) as claimed.

3.3 Log-determinant relaxation

Equipped with these building blocks, we are now ready to state and prove a log-determinant
relaxation for the log partition function.

Theorem 1. Let x be a random vector taking values in {−1,+1}n, and let OUT(Kn) be any convex
outer bound on MARG(Kn) that is contained within SDEF1(Kn). Then the log partition function
Φ(θ) is upper bounded by the solution of the following variational problem:

Φ(θ) ≤ max
µ∈OUT(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ) +

1

3
blkdiag[0, In]

]}
+
n

2
log(

πe

2
) (14)

where blkdiag[0, In] is a (n+ 1)× (n+ 1) block-diagonal matrix.

Remarks: The inclusion OUT(Kn) ⊆ SDEF1(Kn) guarantees that the matrix M1(µ) (and hence
M1(µ)+

1
3 blkdiag[0, In]) will always be positive semidefinite. Importantly, the optimization problem

in equation (14) is a determinant maximization problem, for which efficient interior point methods
have been developed [e.g., 13].

Proof of Theorem 1:
The proof is based on the variational representation of Φ given in equation (7). Examining this

4The notation U [a, b] denotes the uniform distribution on the interval [a, b].
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representation, we see that an upper bound on Φ can be obtained via an upper bound on the
entropy −Φ∗. For any µ ∈ MARG(Kn), let x be a random vector with these marginals. Consider
the continuous-valued random vector x̃ = 1

2x+u. From Lemma 3, we have H(x) = h(x̃); combining
this equality with Lemma 2, we obtain the upper bound H(x) ≤ 1

2 log det cov(x̃)+
n
2 log(2πe). Since

x and u are independent, we can write cov(x̃) = 1
4 cov(x) +

1
12In, where we have used the fact that

cov(u) = 1
12In for an independent uniform random vector u on [−1/2, 1/2]. Next we use the Schur

complement formula [13] to express the log determinant as follows:

log det cov(x̃) = log det
{1
4

[
cov(x) +

1

3
In
]}

= log det
{
M1[µ] +

1

3
blkdiag[0, In]

}
+ n log

1

4
(15)

Combining equation (15) with the Gaussian upper bound leads to the following expression:

H(x) = −Φ∗(µ) ≤
1

2
log det

(
M1[µ] +

1

3
blkdiag[0, In]

)
+
n

2
log(

πe

2
)

Substituting this upper bound into the variational representation of equation (7) yields

Φ(θ) ≤ max
µ∈MARG(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ) +

1

3
blkdiag[0, In]

]
+
n

2
log(

πe

2
)

}

≤ max
µ∈OUT(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ) +

1

3
blkdiag[0, In]

]}
+
n

2
log(

πe

2
)

where the second inequality follows because OUT(Kn) is an outer bound on the marginal polytope
by assumption.

4 Experimental results

At least two aspects of Theorem 1 are of interest for applications. First of all, bounds on the log
partition function are useful in various contexts (e.g., bounds on marginals, parameter estimation,
combinatorial enumeration). The second aspect, and the one on which we focus here, is that the
maximizing arguments µ̂ ∈ OUT(Kn) of equation (14) can be taken as approximations to the
exact marginals of the distribution p(x; θ). So as to test the performance of the log-determinant
relaxation as an inference method, we performed extensive experiments on the complete graph
(fully connected), as well as the 2-D nearest-neighbor lattice model. So as to enable comparison to
the exact answer, we show here results for relatively small problems with 16 nodes.

Random problems: For any given trial, we specified the distribution p(x; θ) by a random choice
choice of the exponential parameter vector θ in the following way. Let U [a, b] denote the uniform
distribution on the interval [a, b]. For every trial shown here, we set each single node parameter
θs ∼ U [−dobs,+dobs] independently for each node, where dobs = 0.25. In every trial, we set the
parameter θst for each edge in an IID manner, where the underlying distribution depended on the
experimental condition. For a given coupling strength dcoup > 0, we investigated three possible
types of coupling: (a) for repulsive (or anti-ferromagnetic) interactions, we set θst ∼ U [−2dcoup, 0];
(b) for mixed (or paramagnetic) interactions, we set θst = U [−dcoup,+dcoup]; (c) for attractive (or
ferromagnetic) interactions, we set θst = U [0, 2dcoup].
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Methodological specifics: Given a problem p(x; θ), we performed the following computations:
(a) the exact marginal probability p(xs = 1; θ) at each node; and (b) approximate marginals com-
puted from the Bethe approximation with the sum-product algorithm [17], or (c) log-determinant
approximate marginals from Theorem 1 using the outer bound OUT(Kn) given by the first semidef-
inite relaxation SDEF1(Kn) in conjunction with the pairwise linear constraints in equation (12).
We computed the exact marginal values either by exhaustive summation (complete graph), or by
the junction tree algorithm (lattices). We used the standard parallel message-passing form of the
sum-product algorithm with a damping factor5 γ = 0.05. The log-determinant problem of Theo-
rem 1 was solved using the SDPSOL program [16] with a MATLAB interface. For each graph (fully
connected or grid), we examined a total of 6 conditions: 2 different potential strengths (weak or
strong) for each of the 3 types of coupling (attractive, mixed, and repulsive). To assess the error
in the approximation, we used the following `1-based measure

1

n

n∑

s=1

|p(xs = 1; θ)− µ̂s|, (16)

where µ̂s was the approximate marginal computed either by SP or by LD.

Results: Table 1 shows quantitative results6 for 100 trials performed in each of the 12 experi-
mental conditions. The potential strength is given as the pair (dobs, dcoup); note that dobs = 0.25
in all trials. For each method, we show the sample mean plus or minus one standard deviation, the
sample median, and the range (min, max) of the errors. Overall, the performance of LD is better
than that of SP in terms of mean or median error. The performance of SP is slightly better in
the regime of weak coupling and relatively strong observations (θs values); see the entries marked
with ∗ in the table. In the remaining cases, the LD method outperforms SP, and often with a large
margin (particularly for examples with strong coupling). The two methods also differ substantially
in the ranges of the approximation error. The SP method exhibits some instability, with the error
for certain problems being larger than 0.5; for the same problems, the LD error ranges are much
smaller, with a worst case maximum error over all trials and conditions of 0.13. In addition, the be-
havior of SP can change dramatically between the weakly coupled and strongly coupled conditions.
For instance, in the attractive condition for K16, the mean error changes by a factor of roughly 20,
even though the coupling strength was only doubled between the weak and strong condition (0.06
and 0.12 respectively). In contrast, the error for LD remains nearly constant between the weak and
strong conditions.
Figures 2 and 3 show a representative set of trials from the 6 conditions for the fully connected

K16 and the grid, respectively. Each figure contains six panels, corresponding to the 6 experimental
conditions. The top plot in each panel shows the SP approximations versus the exact marginals
p(xs = 1; θ), whereas the bottom plot compares the LD approximation to the exact answer. For
the weakly coupled cases in K16 (top row of Figure 2), both methods perform well, and the results
for these problem instances are essentially comparable. For the strongly coupled instances (bottom
row), the performance of SP degrades, particularly for the repulsive and attractive cases (shown in
(d) and (f) respectively). For the attractive case in (f), note that the SP method gives approximate
marginals that are all very near zero, despite the fact that the true marginals are roughly equal to
0.6. This phenomenon is fairly typical: for attractive problems with sufficient coupling, SP typically

5More precisely, we updated messages in the log domain as γ logMst + (1− γ) logMst.
6In each case, we performed 100 trials, but discarded those trials for which SP failed to converge in the analysis.

Of course, this procedure is favorable to sum-product, since its mean error invariably increased with the inclusion of
non-convergent cases, whereas the LD error remained the same or decreased.
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Figure 2. Specific instances of the sum-product (SP) algorithm versus the log-determinant (LD)
relaxation on the complete graph K16. Each panel shows the exact marginal probability p(xs = 1; θ)
at node s, versus the SP approximations (top plot) and LD approximations (bottom plot). Panels
in the top and bottom rows correspond to weaker and stronger coupling, respectively. (See Table 1
for precise numbers). The panels in the left, middle, and right columns correspond to the repulsive,
mixed, and attractive conditions respectively.
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Figure 3. Specific instances of the sum-product (SP) algorithm versus the log-determinant (LD)
relaxation on the four-nearest neighbor grid on 16 nodes. Each panel shows the exact marginal
probability p(xs = 1; θ) at node s, versus the SP approximations (top plot) and LD approximations
(bottom plot). The panel layout is as in Figure 2.
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Problem type Method

Sum-product Log-determinant

Graph Coupling Strength Mean ± std Median Range Mean ± std Median Range

Repulsive (0.25, 0.25) 0.037± 0.015 0.035 [0.01, 0.10] 0.020± 0.005 0.020 [0.01, 0.03]

Repulsive (0.25, 0.50) 0.071± 0.032 0.066 [0.03, 0.20] 0.018± 0.005 0.017 [0.01, 0.04]

Full Mixed∗ (0.25, 0.25) 0.004± 0.005 0.003 [0.00, 0.04] 0.020± 0.005 0.019 [0.01, 0.03]

Mixed (0.25, 0.50) 0.055± 0.060 0.035 [0.01, 0.31] 0.021± 0.010 0.010 [0.01, 0.06]

Attractive∗ (0.25, 0.06) 0.024± 0.016 0.021 [0.00, 0.08] 0.027± 0.015 0.026 [0.01, 0.06]

Attractive (0.25, 0.12) 0.435± 0.196 0.422 [0.08, 0.86] 0.033± 0.019 0.023 [0.01, 0.09]

Repulsive (0.25, 1.0) 0.294± 0.124 0.285 [0.04, 0.59] 0.047± 0.028 0.041 [0.01, 0.12]

Repulsive (0.25, 2.0) 0.342± 0.167 0.342 [0.04, 0.78] 0.041± 0.030 0.033 [0.00, 0.12]

Grid Mixed∗ (0.25, 1.0) 0.014± 0.024 0.008 [0.00, 0.20] 0.016± 0.004 0.016 [0.01, 0.02]

Mixed (0.25, 2.0) 0.095± 0.111 0.053 [0.01, 0.54] 0.038± 0.024 0.032 [0.01, 0.11]

Attractive (0.25, 1.0) 0.440± 0.200 0.404 [0.06, 0.90] 0.047± 0.030 0.037 [0.01, 0.13]

Attractive (0.25, 2.0) 0.520± 0.226 0.550 [0.06, 0.94] 0.042± 0.031 0.031 [0.00, 0.12]

Table 1. Statistics of the `1-approximation error for the sum-product (SP) and log-determinant (LD)
methods. Shown are results for the fully connected graph K16, as well as the 4-nearest neighbor grid
with 16 nodes, with varying coupling and a range of potential strengths (dobs, dcoup). (See text for
definitions of coupling and the potential strengths.) Each experiment is nominally based on 100
trials, excluding those trials for which SP failed to converge.

outputs approximations that are either all close to zero or to one, which can be very far from the
exact answer. The LD method, in contrast, remains quite accurate. Similar patterns are observed
for the grid7 in Figure 3. For the grid, both the repulsive and the ferromagnetic cases again cause
a great deal of difficulty for SP, while the performance of LD remains good on these same problem
instances.
With regards to computational complexity, the interior point method [13] for solving LD has a

guarantee of polynomial-time complexity to solve the problem to within order ε. In contrast, there
are no such guarantees associated with the SP algorithm; indeed, as we saw, it may even fail to
converge. In practice, however, we found that the SP algorithm was typically more efficient than
the LD method, particularly on the easier problems (for which it converges rapidly).

5 Connection to integer programming

The results of the previous section demonstrate that the performance of the LD method remains
robust over a wide range of coupling types and strengths. Of particular interest is that (unlike
SP) the performance degrades gracefully as the interaction strength is increased. The goal of this
section is to understand the behavior for strong coupling in a more formal manner.
For a fixed parameter vector θ ∈ Rd, we consider the 1-parameter family of distributions

{ p(x; θ/t) | t > 0 }. Here the parameter t plays the role of “temperature”. For instance, a large

7Here the performance of SP appears worse overall than for the fully connected K16, an anomaly due to the fact
that we tested the grids with couplings that were stronger (in a relative sense) than those for K16. Our primary
reason was that SP failed to converge very frequently for strong coupling on K16.
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choice of t weakens the coupling, so that the distribution is close to uniform. Of interest to us is the
opposite extreme: namely, the so-called zero-temperature limit t → 0+, in which the distribution
concentrates all its mass on the most likely configurations. It turns out that actually taking the zero
temperature limit of the log-determinant relaxation in Theorem 1 leads to well-known semidefinite
relaxations for quadratic binary integer programming problems.

Proposition 1 (Integer programming). The limiting form of the log-determinant relaxation of
Theorem 1 as t→ 0+ is the following semidefinite relaxation for a quadratic binary integer program:

max
x∈{−1,+1}n

{∑

s∈V

θsxs +
∑

(s,t)

θstxsxt
}
≤ max

µ∈OUT(Kn)

{∑

s∈V

θsµs +
∑

(s,t)

θstµst
}
. (17)

Proof. With reference to the LHS of equation (14), we have the well-known relation:

lim
t→0+

t Φ(θ/t) = max
x∈{−1,+1}n

{∑

s∈V

θsxs +
∑

(s,t)

θstxsxt

}
.

Now considering the same limit for the RHS of equation (14), it can be seen that it reduces to
evaluating limt→0+ t Φ̃(θ/t), where the function Φ̃ is defined for all θ ∈ Rd as:

Φ̃(θ) = max
µ∈OUT(Kn)

{
〈θ, µ〉+

1

2
log det

[
M1(µ) +

1

3
blkdiag[0, In]

]}
.

By definition, Φ̃ is conjugate to the proper convex function of µ defined as

Φ̃∗(µ) =

{
−1

2 log det
[
M1(µ) +

1
3 blkdiag[0, In]

]
if µ ∈ OUT(Kn)

+∞ otherwise.

Therefore, Φ̃ is proper and lower semi-continuous (closed), so that the quantity limt→0+ t Φ̃(θ/t)
is equivalent to the recession function of Φ̃ (see Theorem 8.5 in Rockafellar [12]). For a proper
and closed convex function, the recession function of Φ̃ is given by the support function of dom Φ̃∗

(Theorem 13.3. in Rockafellar [12]). In analytical terms, we have

lim
t→0+

t Φ̃(
θ

t
) = max

µ∈OUT(Kn)
〈θ, µ〉 = max

µ∈OUT(Kn)

{∑

s∈V

θsµs +
∑

(s,t)

θstµst
}
,

which completes the proof.

Note that the integer program on the LHS of equation (17) corresponds to the problem of finding
the most likely configuration (i.e., maximizing log p(x; θ).) Semidefinite relaxations, such as that
on the RHS of equation (17), are widely-used in combinatorial optimization; notably, Goemans and
Williamson [6] have provided sharp worst-case guarantees for its performance on the MAX-CUT
problem8 in the case OUT(Kn) = SDEF1(Kn).

8The MAX-CUT problem is a special case of the integer program on the LHS of equation (17), for which θs = 0
for all s ∈ V and θst ≤ 0 for all pairs (s, t).
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6 Discussion

This paper demonstrated the utility of semidefinite techniques for computing approximate marginals
in graphs with cycles. In particular, we developed a method based on the combination of a Gaus-
sian entropy bound with semidefinite constraints on the marginal polytope. The resultant log-
determinant maximization problem can be solved by efficient interior point methods [13]. In exper-
imental trials, we found that the log-determinant method was either comparable to or outperformed
the sum-product algorithm, and by a substantial margin for certain problem classes.
Although this paper focused exclusively on the binary problem, the methods described here can

be extended to the general multinomial case. It also remains to develop a deeper understanding
of the interaction between the two choices involved in these approximations (i.e., the entropy
bound, and the outer bound on the marginal polytope), as well as how to tailor approximations
to particular graph structures. It is certainly possible to combine semidefinite constraints with
entropy approximations (preferably convex) other than the Gaussian bound used in this paper.
For instance, it would be interesting to investigate the behavior of “convexified” Bethe/Kikuchi
entropy approximations [14] in conjunction with semidefinite constraints. Finally, we showed how
the zero-temperature limit of the log-determinant variational problem coincides with well-known
semidefinite relaxations for integer programming. One open question is whether techniques for
bounding the performance of such semidefinite relaxations [e.g., 6] can be adapted to the finite
temperature case.

A Linear constraints on the marginal polytope

In this appendix, we clarify the connection between the linear constraints defined in Section 3.1.2,
local consistency, and graphical models.

A.1 Pairwise constraints

We first establish that the constraints (12) on {µs, µt, µst} are necessary and sufficient to guarantee
the existence of a consistent pairwise marginal for (xs, xt). In order to do so, it is convenient to
work with an alternative set of random variables ys =

1
2(1 + xs) that take values in {0, 1}. We use

λs and λst to denote the associated set of mean parameters E[ys] and E[ysyt], which are linked to
µ by the linear relations

λs =
1

2
(1 + µs) (18a)

λst =
1

4
(1 + µs + µt + µst) (18b)

The {0, 1} representation is convenient because the mean parameters λ correspond directly to
particular marginal probabilities: specifically, we have λs = p(xs = 1) and λst = p(xs = 1, xt = 1).
Consequently, it is straightforward to see that {λs, λt, λst} specify a pairwise marginal as follows:

p(xs, xt) =

[
(1 + λst − λs − λt) (λt − λst)

(λs − λst) λst

]
(19)

Note the sum of these four entries in this 2×2 matrix is equal to one for all λ, as it must for a joint
marginal. Moreover, as a marginal probability, each entry must lie in the interval [0, 1]. Given the
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sum condition, it is necessary and sufficient to impose non-negativity for each entry:

λst ≥ 0 (20a)

λt − λst ≥ 0 (20b)

λs − λst ≥ 0 (20c)

1 + λst − λs − λt ≥ 0 (20d)

By making use of the relation (18) between λ and µ, elementary calculations show that the con-
straints (20) are equivalent to the four constraints specified by equation (12).

A.2 Triplet constraints

We now show how the triplet constraints (13) are necessary and sufficient to specify a valid marginal
over the triplet (xs, xt, xu). Once again, it is convenient to work in terms of the variables ys ∈ {0, 1}.
Considering the triplet entails introducing the additional mean parameter:

λstu = E[ysytyu] = p(ys = 1, yt = 1, yu = 1) (21)

The full collection of seven mean parameters {λs, λt, λu, λst, λsu, λtu, λstu} suffices to specify the
eight entries of the triplet marginal, where the final degree of freedom is associated with the sum
constraint. More specifically, we have the following relations:

p(ys = 1, yt = 1, yu = 1) = λstu (22a)

p(ys = 0, yt = 0, yu = 0) = 1− λs − λt − λu + λst + λsu + λtu − λstu (22b)

p(ys = 1, yt = 1, yu = 0) = λst − λstu (22c)

p(ys = 1, yt = 0, yu = 0) = λs − λst − λsu + λstu (22d)

Equation (22a) follows by definition, whereas equation (22b) follows by applying the inclusion-
exclusion principle. Equation (22d) is derived most easily by drawing a Venn diagram. Of course,
we have three copies of each of the last two equations, corresponding to the three possible positions
of the zero (equation (22c)) or the one (equation (22d)).
Once again, it is clear that the sum constraint is satisfied. (Specifically, for all choices of λ, the

sum of equations (22a) through (22d) is one, remembering that we have three copies of the last
two equations.) Therefore, it is necessary and sufficient to force each marginal to be non-negative,
which yields a set of inequality constraints for the mean parameters λ. In order to derive the triplet
constraints (13), we need to project the polytope down to lower dimension by eliminating λstu from
the description. In order to do so, we use Fourier-Motzkin elimination [see 2], as applied to the
inequalities:

λstu ≥ 0 (23a)

λstu ≥ −λs + λst + λsu (23b)

λstu ≤ 1− λs − λt − λu + λst + λsu + λtu (23c)

λstu ≤ λst, λsu, λtu (23d)

Combining the (≤) constraints with the (≥) constraints in pairs, as specified by the Fourier-Motzkin
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procedure, yields the following inequalities:

λst, λsu, λtu ≥ 0 (a) and (d)

1 + λtu − λt − λu ≥ 0 (b) and (c)

λs − λsu ≥ 0 (b) and (d) with λst

λs + λtu − λsu − λst ≥ 0 (b) and (d) with λtu

1− λs − λt − λu + λst + λsu + λtu ≥ 0 (a) and (c)

The first three sets of inequalities should be familiar; from the discussion in Appendix A.1, these
constraints (and permutations thereof) guarantee validity of the three sets of pairwise marginals.
(The last two inequalities, in contrast, cannot be derived by such pairwise considerations.) Finally,
by using the relation (18) between λ and µ, it can be seen that the last two inequalities are equivalent
to the constraints in equation (13).
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