
The Program-Size Complexity of Self-Assembled Squares

[Extended Abstract, Feb. 23, 2000]

Paul W. K. Rothemund
Dept. of Computer Science

University of Southern California

pwkr@cs.usc.edu

Erik Winfree
Dept. of Computer Science and CNS

California Institute of Technology

winfree@caltech.edu

ABSTRACT
Molecular self-assembly gives rise to a great diversity of com-
plex forms, from crystals and DNA helices to microtubules
and holoenzymes. We study a formal model of pseudo-

crystalline self-assembly, called the Tile Assembly Model,
in which a tile may be added to the growing object when
the total interaction strength with its neighbors exceeds a
parameter T . This model has been shown to be Turing-
universal. Thus, self-assembled objects can be studied from
the point of view of computational complexity. Here, we de-

�ne the program size complexity of an N�N square to be the
minimum number of distinct tiles required to self-assemble
the square and no other objects. We study this complexity
under the Tile Assembly Model and �nd a dramatic de-
crease in complexity, from N2 tiles to O(logN) tiles, as T
is increased from 1 (where bonding is noncooperative) to 2

(allowing cooperative bonding). Further, we �nd that the
size of the largest square uniquely produced by a set of n
tiles grows faster than any computable function.

1. INTRODUCTION
The spontaneous self-organization of complicated structures
in natural systems has long fascinated physical scientists.

They ask, \How should order be de�ned for such struc-
tures?" and, \How are such structures generated?" It is
now clear that computational mechanisms play an impor-
tant role in understanding natural self-organization, at least
in biological systems: algorithms control the generation of

order. Research in DNA and molecular computation [Adle-
man, 1994] has established that universal computation can
be performed in biochemical systems, such as enzymatic
(ribosome-like) modi�cation or translation of a heteropoly-
mer [Bennett, 1982; Kurtz et al., 1997], signal-transduction
cascades [Hjelmfelt and Ross, 1995; Magnasco, 1997], and

the self-assembly of protein or DNA into supramolecular
structures [Radin, 1991; Winfree, 1996]. How widespread
is in
uence of computational mechanisms in the generation
of order { does it spread beyond the biological domain?

STOC ’00 Portland, Oregon USA

For most of this century, order in self-assembled chemical
systems was thought to be well understood. Order was syn-
onymous with periodic order { the order of crystals. The
term crystal was reserved for materials characterized by one
of the 230 space groups; everything else was described as

disordered, amorphous, or glassy. The discovery of qua-
sicrystalline materials[Schectman et al., 1984], with their
\forbidden" �ve-fold symmetry shattered this monopoly but
left a vacuum{what is order if not periodic? One answer
is to de�ne crystal as \a structure with an essentially dis-
crete di�raction pattern"[Senechal, 1995]. This patch for the

existing framework includes quasicrystals, but leaves little
room for still more exotic structures that may lurk undiscov-
ered and excludes altogether biological materials that have
complex order. These concerns have led the crystallogra-
pher Alan Mackay to propose that a \generalized crystal-
lography" might de�ne order[Mackay, 1995] using computer

programs and cellular automata.

Such an algorithmic framework for studying self-assembly
is attractive for two reasons. First, because of Church's
thesis, we expect that computer programs will be able to
capture all of the complex behaviour of self-assembly { no

more complicated theory will be required. Second, such a
framework will allow principles of computer science to be
translated into statements about the physical world. For ex-
ample, the self-assembly of DNA structures may be mapped
naturally onto the languages of the Chomsky Hierarchy [Win-

free et al., 1998b].

Here, we are interested in studying the self-assembly of
objects from the point of view of computational complex-
ity. Standard complexity measures in computer science are
based on time, space, program size, and decidability. To

study the time complexity of self-assembly, Leonard Adle-
man has proposed a model that emphasizes counting time
steps during the self-assembly of a single copy of each of a �-
nite number of tiles into the �nal structure. He has used this
model to analyze the self-assembly of N -long linear polymers
[Adleman, 2000]. Adleman has also asked, \What is the

complexity of generating an N�N square by self-assembly?"
Here, we answer this question for program-size complexity
under the Tile Assembly Model, where self-assembly occurs
in the presence of an in�nite supply of a �nite number of
tile types.

The Tile Assembly Model is a formal model for the self-
assembly of molecules, such as protein or DNA, constrained

to self-assemble on a square lattice; i.e. it is a model of

pseudo-crystalline growth. The model is an extension of the
theory of tiling by Wang tiles [Wang, 1961] to include a spe-
ci�c mechanism for growth based on the physics of molec-
ular self-assembly. A \program" consists of a �nite set of
unit square tiles with colored sides (each available in an un-
limited number of copies). Each color represents a type of

molecular binding domain, and thus each color has an asso-
ciated \binding strength," which in our model must be an
integer. Starting from a chosen seed tile, growth occurs by
addition of single tiles. (The growth of crystals by monomer
addition, as opposed to merging of crystal fragments, is a
common assumption in studies of crystal growth [Markov,

1995]; large defect-free crystals are not observed under phys-
ical conditions where growth occurs by aggregation of small
fragments.) Tiles bind a growing assembly only if their bind-
ing interactions are of su�cient strength, as determined by
the \temperature" parameter T .

T measures the \cooperativity" of the binding interac-
tions. At T = 1, any binding interaction of strength 1 or
greater is strong enough, by itself, to hold a tile in place.
This lack of cooperativity appears to go hand-in-hand with
a lack of computational power. At T = 2, however, single
strength-1 interactions are too weak to hold a new tile in

place; at least two strength-1 bonds must cooperate for a
tile to be added to an assembly. Under T = 2 conditions
it has been shown that one-dimensional cellular automata
can be simulated; hence T = 2 self-assembly is universal
[Winfree, 1996]. It is interesting to observe that cooperative

e�ects play a major role in gene regulation [Ptashne, 1992]
and many other biological systems.

Branched DNA molecules [Seeman, 1998] provide a di-
rect physical motivation for the Tile Assembly Model. DNA
double-crossover molecules, each bearing four \sticky ends"

analogous to the four sides of a Wang tile, have been de-
signed to self-assemble into a periodic two dimensional lat-
tice [Winfree et al., 1998a]. The binding interactions be-
tween double-crossover molecules may be redesigned by chang-
ing the base sequence oof their sticky ends, thus allowing
arbitrary sets of molecular Wang tiles to be investigated in

the laboratory. From a physically-based stochastic model of
such a system, the Tile Assembly Model is obtained in the
limit of strong binding domains and low monomer concen-
trations [Winfree, 1998].

Macroscopic systems for 2D self-assembly based on lat-

eral capillary forces [Hosokawa et al., 1996; Bowden et al.,
1997; Bowden et al., 1999; Rothemund, 2000] provide ad-
ditional motivation for the Tile Assembly Model. In these
systems millimeter-scale plastic tiles
oat at an interface be-
tween hydrophobic and hydrophilic liquids (e.g., oil and wa-

ter) and self-assemble into lattices as the system is agitated
on a shaker. Binding interactions between tiles are spec-
i�ed by sequences of hydrophilic and hydrophobic patches
applied to the edges of tiles; when sequences match, capil-
lary forces mediate bonds between tiles. Tile sets with up to
four distinct Wang tiles have been created by this method

[Rothemund, 2000]. Analogies between such systems and
molecular self-assembly are not yet quantitative, but it has
been observed that the frequency of shaking acts similarly
to temperature and that dimers bind cooperatively to lat-

tices. Thus cooperative T = 2 assembly may be possible in

a capillary force-based system.

It is straightforward to restrict the Tile Assembly Model
to 1D, or to extend it to 3D. However, the 1D case allows
no interesting computation to be performed; it is easy to
see that to produce a 1D line of N tiles requires N tiles for

all T > 0. This result exactly parallels the decidability the
1D tiling problem; the 2D tiling problem, inc contrast, is
undecidable [Berger, 1966]. At the other extreme, it seems
unlikely that 3D allows for phenomena fundamentally di�er-
ent from 2D, since universal computation is already possible
in 2D.

2. A MODEL OF SELF-ASSEMBLY
Our discussion of the Tile Assembly Model will make use
of the following de�nitions. N is the set of natural num-

bers f0; 1; 2; : : : g, Z = N [�N is the set of integers, and
R is the set of real numbers. We will be working the two-
dimensional grid of integer positions, Z�Z. The directions,
D = fN;E; S;Wg, will be used as functions fromZ�Zto Z�
Z: N(x; y) = (x; y+1), E(x; y) = (x+1; y), S(x; y) = (x; y�
1), and W (x; y) = (x� 1; y). We say that (x; y) and (x0; y0)

are neighbors if (x0; y0) 2 fN(x; y); E(x; y); S(x; y);W (x; y)g.
Note that E�1 =W , and N�1 = S.

A partially ordered set (poset) (S;�) is a set S and
a re
exive, transitive, antisymmetric relation �. If m � a

and m � b and 8c 2 S; [c � a and c � b] =) c � m, then
m is called the meet of a and b. If a � j and b � j and
8c 2 S; [a � c and b � c] =) j � c, then j is called the
join of a and b. If all pairs a; b have both a meet and a join,
then (S;�) is called a lattice.

A (Wang) tile over � is a unit square where each side
is colored from the set � of binding domains; formally,
a tile t is a 4-tuple (�N ; �E; �S ; �W) 2 �4 indicating the
binding domains on the north, east, south, and west sides.
For D 2 D, we write bdD(t) to refer to the binding domain of
the respective side of tile t. According to this de�nition, tiles

may not be rotated; (�N ; �E ; �S ; �W) 6= (�W ; �N ; �E ; �S).
A special binding domain null represents a non-interaction,
and the special tile empty = (null; null; null; null) is used
to represent the absense of any other tile.

The binding domains determine the interaction between

tiles; that is, when two tiles may be placed next to each
other. A function g : � � � ! R, where null 2 �, is
a strength function if 8�; �0 2 �, g(�; �0) = g(�0; �) and
g(null; �) = 0. Two tiles that abut on sides labelled � and �0

bind with strength g(�; �0), as discussed below. Here, we will
only consider g such that mismatched sides have no inter-

action strength and matching sides have positive strengths
given in integral units, in which case the strength of a side

labeled by � is ĝ(�) 2 N and g(�; �0) =

(
ĝ(�) if � = �0

0 otherwise.

Let T be a set of tiles containing the special tile empty.
A con�guration of T is a function A : Z� Z! T . We

write (x; y) 2 A i� A(x; y) 6= empty. For D 2 D, we say the
tiles at (x; y) and D(x; y) bind to each other with strength

g
A
D(x; y) = g(bdD(A(x; y)); bdD�1(A(D(x; y)))):

saul t griffith

1 n
1

n

1
0 n
0

n

0

1 c
1

n

0
0 c
0

c

1
Rc

L
0

S

0 n
0

n

0
1 c
1

n

0
Rc

1 c
1

n

0
0 c
0

c

1
0 c
0

c

1
0 c
0

c

1
Rc

0 n
0

n

0
0 n
0

n

0
1 n
1

n

1
1 n
1

n

1
1 c
1

n

0
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 n
1

n

1
1 c
1

n

0
0 c
0

c

1
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 n
1

n

1
0 n
0

n

0
1 c
1

n

0
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 c
1

n

0
0 c
0

c

1
0 c
0

c

1
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 n
1

n

1
1 c
1

n

0
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 c
1

n

0
0 c
0

c

1
Rc

0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
0 n
0

n

0
1 c
1

n

0
Rc

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

S

Figure 1: Simulating a binary counter with self-assembly. At left, a set T of seven tiles is depicted. In this

�gure and all �gures that follow thick sides have strength 0, thin sides have strength 1, and double-lined sides

have strength 2. At right, an assembly produced by T = hT; fSg; g; 2i is shown. The assembly is not terminal

and arrows indicate positions at which it may grow.

If gAD(x; y) > 0, then the tiles make a bond. If t is a

tile, A
(x;y)
t is the con�guration such that A

(x;y)
t (x; y) = t

and all other sites are empty. A
(0;0)
empty is called the empty

con�guration.

Addition of con�gurations A and B is de�ned by C =
A+B where

C(x; y) =

8><
>:
A(x; y) if B(x; y) = empty

B(x; y) if A(x; y) = empty

1 otherwise.

Note that C is not necessarily a con�guration, because C
might contain 1 values.

Union of con�gurations A and B is de�ned by C = A[B
where

C(x; y) =

8><
>:
A(x; y) if A(x; y) = B(x; y) or B(x; y) = empty

B(x; y) if A(x; y) = B(x; y) or A(x; y) = empty

1 otherwise.

Note that C is not a con�guration i� there is a site (x; y) s.t
A(x; y) and B(x; y) are distinct non-empty tiles.

Intersection of con�gurations A and B is de�ned by C =
A \B where

C(x; y) =

8><
>:
A(x; y) if A(x; y) = B(x; y)

empty if A(x; y) = empty or B(x; y) = empty

1 otherwise.

Note that C is not a con�guration i� there is a site (x; y) s.t

A(x; y) and B(x; y) are distinct non-empty tiles.

The free energy of a con�guration C is the sum of all
interaction strengths between tiles (in contrast to standard

usage in chemistry, favorable interactions are given by pos-
itive numbers):

G(C) =
1

2

X
x;y2Z

X
D2D

g
C
D(x; y):

The temperature T gives the minimal interaction strength
required to overcome thermal disruption. A con�guration C
is a T -stable assembly if for all non-empty con�gurations
A and B such that C = A+B, G(C) � G(A) +G(B) + T .
That is, a T -stable assembly cannot fall apart into two pieces
without decreasing the total G by T or more. Note that for
T > 0, a T -stable assembly must contain a single connected
component. When T is understood, we simply say that C
is an assembly.

A tile systemT is speci�ed by the quadruple hT; S; g;T i,
where T is a �nite set of tiles containing empty, S is a set
of T -stable seed assemblies, g is a strength function, and
T � 0 is the temperature. In this paper, we consider only

jSj = 1, where S = A
(0;0)
s for some seed tile s.

Self-assembly is de�ned by a relation between con�gu-
rations: A !T B if there exists a tile t 2 T and a site
(x; y) such that B = A + A

(x;y)
t and B is T -stable. Since

G(A
(x;y)
t) = 0, G(B) � G(A) + T ; i.e., a tile may be added

to an assembly if the summed strength of its interactions
with its neighbors exceeds a threshold set by the temper-
ature. In particular, at T = 1, a tile may be added if it
makes any bond to a neighbor, whereas at T = 2, to be
added the tile must either make two weak bonds or a single

strong bond. !�
T is the re
exive transitive closure of !T.

The tile system de�nes a partially ordered set, the pro-

duced assemblies Prod(T), where:

Prod(T) = fA s.t. 9s 2 S s.t. s!
�
T Ag

and

A � B i� A!�
T B:

Another set, the terminal assemblies Term(T), is de�ned

as the maximal elements of Prod(T):

Term(T) = fA 2 Prod(T) s.t. 6 9B s.t. A < Bg:

The produced assemblies include intermediate products of
the self-assembly process, whereas the terminal assemblies
are just the end products, and may be considered the \out-
put." If

A 2 Prod(T) =) 9B 2 Term(T) s.t. A!�
T B

then T is said to be haltable, in the sense that every path
of self-assembly can eventually terminate. If T is haltable
and Term(T) is �nite, T is said to be halting in the sense

that every path of self-assembly does eventually terminate.
A halting tile system uniquely produces C if Term(T) =
fCg. Note that if a tile system uniquely produces C then
Prod(T) is a lattice: the join of A and B is A[B, and the
meet of A and B is maxfC0 2 Prod(T) s.t. C0 � (A \B)g.
In general, if Prod(T) is a lattice, we say that T produces a

unique pattern { T need not be halting nor even haltable.

The universality of the Tile Assembly Model follows from
an elaboration of the ideas used to prove the undecidabil-
ity of the origin- and diagonal-constrained tiling problems
[Wang, 1963; Winfree, 1998]. In this construction, the perime-

ter of produced assemblies encodes the state of the Turing
machine. Tile additions change the information exposed on
the perimeter, e�ecting the state transitions. Thus, informa-
tion computed as by a Turing machine can direct the growth
of the assembly, and thus direct complex pattern formation.

As an example, consider the tile system of Figure 1, con-
sisting of four rule tiles with strength-1 binding domains,
two border tiles with strength-1 and 2 binding domains, and
one seed tile with strength-2 binding domains. At T = 2,
these tiles count in binary; the nth row above the origin rep-
resents the binary integer n. This self-assembly \program"

is analogous to an in�nite loop { there are no terminal as-
semblies. The reader is encouraged to start with the seed
tile S and to verify that a unique pattern is produced: i.e.
Prod(T) is a lattice. Rule tiles may be added only if both
their eastern and southern neighbors are already in place,
and there is a unique rule tile for each possible pair of bind-

ing domains the neighbors could present; furthermore, the
property that only northern and western sides are exposed
in the assembly is preserved from step to step. For the same
tile set at T = 1, the order of self-assembly is not similarly
constrained; tiles may be added even when one of two neigh-
bors is a mismatch, and thus many disordered assemblies are

produced.

3. COMPLEXITY OF SELF-ASSEMBLY
In this section we will be measuring program-size complexity
using asymptotic notation. All functions will be from N !
N. A function f(n) is non-decreasing i� 8n; f(n) � f(n+

1). A function f(n) is unbounded i� 8c; 9n s.t. f(n) � c.

We say f(n) = O(g(n)) i� 9c; n0 s.t. 8n > n0; f(n) � cg(n).
We say f(n) =
(g(n)) i� 9c; n0 s.t. 8n > n0; f(n) � cg(n).
We assert proposition P (n) in�nitely often i� 8n0 > 0; 9n >
n0 s.t. P (n). De�ne Oi:o: (\big-O in�nitely often") such
that f(n) = Oi:o:(g(n)) i� 9c s.t. f(n) � cg(n) in�nitely
often. We assert proposition P (n) for almost all n i�

limn0!1
jf1�n�n0 s.t. P (n)gj

n0
= 1. De�ne
a:a: (\big-
 al-

most always") such that f(n) =
a:a:(g(n)) i� 9c s.t. f(n) �
cg(n) for almost all n.

We can now formally describe the program-size complex-
ity of an N�N square. An assembly A is an N�N square

if there exists a site (x0; y0) such that (x; y) 2 A i� x � x0
and x < x0 + N and y � y0 and y < y0 + N . In other
words, the choice of tiles may be arbitrary, so long as they're
there. Square A is a full square if for all (x; y); (x0; y0) 2 A
such that (x; y) and (x0; y0) are neighbors, (x; y) and (x0; y0)
bind with non-zero strength. In other words, every adjacent
pair of tiles must have non-zero interaction strength. We

are interested in which squares can be self-assembled by tile
systems:

SqT = f(N;n) 2 N � N s.t. there exists a tile system

T = hT; fsg; g;T i; jT j = n+ 1;

and T uniquely produces an N�N full square g:

We de�ne the program size complexity KT
SA(N) of a square

to be the minimum number of distinct non-empty tiles re-

quired to uniquely produce the square { physically the num-
ber of distinct types of molecules that must be prepared.

K
T
SA(N) = minfn s.t. (N;n) 2 Sq

T g

Our investigations rely on several constructions. We need
an easy way to verify that these constructions do indeed
uniquely produce the target structure. For each construc-

tion, the argument is an elaboration of the argument given
for the binary counter tiles, only now an assembly may
have more than one diagonal growth front. Speci�cally, the
property that is preserved from step to step is that the as-
sembly is \stop-sign"-shaped: the orientations of the ex-

posed sides along the (clockwise) perimeter are of the form
N�fN;Eg�E�fE; Sg�S�fS;Wg�W �fW;Ng�. These argu-
ments rely on showing that there is exactly one strength-2
bond joining each row and each column.

We begin by studying KT
SA(N) for T = 1 and obtain the

following theorem:

Theorem 1. K1
SA(N) = N2.

Proof. To show K1
SA(N) � N2, we construct N2 tiles,

one for each position in the square, with a unique strength-1
binding domain for each adjacent pair of tiles as in Figure 2.
To show K1

SA(N) � N2, suppose a tile set T with jT j < N2

produces an N�N full square A (Figure 3). Then some tile i
is present at two sites in A, say (x1; y1) and (x2; y2). Let L
be the \L"-shaped (or possibly linear) assembly consisting

only of the tiles at (x1; y1) : : : (x2; y1) : : : (x2; y2); let L
1 be

a 1 1
2

1 5
2 2

3

2 6

1
2 3 3

4
2
3

3 7
43

4

4 8

5 5
6

1 5

5 9
6 6

7

2 6

5
6

6 10
7 7

8

3 7

6
7

7 11
8
4 8

7
8

8 12

9 5
6

5 9

9 13
1010

11

6 10

9
10

10 14
1111

12

7 11

10
11

11 15
12

8 12

11
12

12 16

13
9 13

13
14 14

10 14

13
14

14
15 15

11 15

14
15

15
16 16

12 16

15
16

1 1
2

1 5
2 2

3

2 6

1
2 3 3

4
2
3

3 7
43

4

4 8

5 5
6

1 5

5 9
6 6

7

2 6

5
6

6 10
7 7

8

3 7

6
7

7 11
8
4 8

7
8

8 12

9 5
6

5 9

9 13
1010

11

6 10

9
10

10 14
1111

12

7 11

10
11

11 15
12

8 12

11
12

12 16

13
9 13

13
14 14

10 14

13
14

14
15 15

11 15

14
15

15
16 16

12 16

15
16

b 1 1
2 2 2

3
1
2

3 3
4

2
3 43

4

5
5 6

6
6 7

5 6

7
6 7

1 1
2 2 2

3
1
2 3 3

4
2
3 43

4

5
5 6

5
5 6

5
5 6

5
5 6

6
6 7

5 6

6
6 7

5 6

6
6 7

5 6

6
6 7

5 6

7
6 7

7
6 7

7
6 7

7
6 7

Figure 2: Formation of squares at T = 1. (a) N2 = 16 tiles with unique side labels uniquely produce a terminal

4�4 full square at T = 1. (b) 2N�1 = 7 tiles uniquely produce a 4�4 square (but this is not a full square since
thick sides have strength 0). Except for the sides labeled with a circle, each interacting pair of tiles share a

unique side label. This comb-like construction is conjectured to be minimal for N�N squares assembled at

T = 1.

i . . . L2

n

2 2(x ,y) L2

+1

i

1 1(x ,y) L

i

S

Figure 3: No T = 1 tile system with fewer than N2
tiles can uniquely produce an N�N square. A full N�N

square with fewer than N2
tiles must have some tile i present at two sites. Consider the assembly R (the

white tiles) which includes an assembly L (bounded by the tiles i), the seed tile S, and a tile that connects

the seed tile to L. R can be extended inde�nitely with the addition of translated segments of L (e.g. L2
+1

shown in gray).

the assembly such that L1 + (x2; y2) = L; let L2 be the
assembly such that (x1; y1)+L2 = L; let Lkn(x; y) = Lk(x+
n � (x2�x1); y+n � (y2� y1)) be a translated version of Lk

for k = 1; 2; and let R consist of L, S, and the fewest tiles

in A required to connect S to L. Because R is contained in
A and A is a full square, all adjacent pairs of tiles interact
on a strength-(at least)-1 side, and therefore S !�

T R. At
least one of fL1

�1; L
1
+1; L

2
�1; L

2
+1g, say Lrs, can be added to

R, resulting in a larger assembly also produced by T. This

can be continued inde�nitely: if s = +1 then for all n,
R +

Pn

i=+1
Lri is in Prod(T); if s = �1 then for all n, R+P

�1

i=�n
Lri is in Prod(T). This contradicts the assumption

that T is halting and terminates in N�N full squares.

At T = 2 the situation is markedly di�erent.

Theorem 2. K2
SA(N) = O(N).

Proof. Figure 4 shows two constructions for an N�N full
square using 2N (Figure 4a) and N + 3 (Figure 4b) tiles
respectively. Self-assembly from the seed tile 1 proceeds ini-
tially by single strength-2 interactions creating the borders
with the numbered tiles. As the border grows, two coop-

erative strength-1 interactions allow the blank tile to �ll in

and complete the square. For the tiles at the right, the A
and B tiles enter a new column by their strength-2 side,
thus allowing the rest of the column to be �lled with blanks.
The N�N full square can be easily veri�ed to be a terminal

assembly.

This is only the beginning. The construction in Figure 4b
can be combined with a �xed-width version of the binary
counter of Figure 1 to obtain a set of tiles that produce the
N�N full square by counting in binary instead of by counting
in unary.

Theorem 3. K2
SA(N) = O(logN).

Proof. Figure 5 constructs an N�N full square using
n + 22 tiles, where n = dlogNe. n + 2 tiles, including
the seed tile, produce an (n � 1) � (n � 1) square as in

the previous construct. Additionally, the n � 1 tiles in the
seed row have upper sides encoding the bits of the integer
c = 1 + 2n�1 � (N � n)=2, the initial value of the counter.
We must use a �xed-width version of the counter tiles of
Figure 1; this requires a special set of tiles for the leftmost
and rightmost columns of bits. The counter counts from c

to 2n�1, using two rows for each integer. In order to detect

a 1 2

3 4

5 6

7 8

9

1 2 3 4 5

6

7

8

9

b 1 2

3 4

5

A B

1 2 3 4 5

B A

B A

B A

A

Figure 4: Formation of full squares at T = 2. (a) 2N = 10 tiles uniquely produce 5� 5 full square. Except for

the sides labeled with a circle, each interacting pair of tiles share a unique side label (but we do not label

them explicitly as in Figure 2.) (b) N + 4 = 9 tiles are used.

0
*0

1
1

0
0

0
0

1

A B a b

0 n
0

n

0
1 n
1

n

1
1 c
1

n

0
0 c
0

c

1
0 x
0

x

0
1 x
1

x

1

0 n

*0
1 n

*1
1 c

*0
0 c

*1
0 x
*0

1 x
*1

0
0*

c 0
0*

c 1
1*

n 0x

0*
1x

1*

0 c

*1
0 c
0

c

1
0 c
0

c

1
0 c
0

c

1
0
0*

c b a

1 x
*1

1 x
1

x

1
1 x
1

x

1
1 x
1

x

1
1x

1*
b a

b a

0 n

*0
1 n
1

n

1
0 n
0

n

0
1 n
1

n

1
1
1*

n b aco
py

 r
ow

0 x
*0

1 x
1

x

1
0 x
0

x

0
1 x
1

x

1
0x

0*
b a

in
cr

em
en

t r
ow

0 n

*0
1 n
1

n

1
0 n
0

n

0
1 c
1

n

0
0
0*

c a

se
ed

 r
ow

0
*0

1
1

0
0

0
0

1

B A

B A

B A

A

Figure 5: Formation of N�N square using O(logN) tiles. Construction starts with an n� 1� n� 1 square as

in Figure 4b. Here N = 52; n = 6 and 28 tiles are used. The construction illustrates the case for even N � n;
the �rst row above the seed row is a copy row for odd N � n.

when the counter has �nished, we use alternating rows to in-
crement the counter from right to left, then to copy the the
bits from left to right unless the leftmost bit just rolled over
from 1 to 0. In the latter case, the tile presents a strength-2
side with a label not found on any other tiles, thus halt-

ing the counter. (The strength-2 side will be used in our
next construction; here, any strength would su�ce.) There
is a special tile for the rightmost bit in the �rst increment
row above the seed row. This tile contains a strength-2 side
to initiate the a-b diagonal, thus �lling in the rest of the

square. Overall, the counter requires 18 tiles; the seed row
requires n � 1 tiles; the two diagonals require 4 tiles; and
there are two blank tiles.

But we can do much better: by recursively iterating the
above construction one can produce N�N squares with

N � 2
22

:::

2

| {z }
n times

def
= 2 � �n

using only O(n) tiles. De�ne log�N as the least n such that

2 � �n � N .

Theorem 4. K2
SA(N) = Oi:o:(log

�N).

Proof. Our proof is by induction. Let Sn refer to a tile

system containing fewer than 22n tiles (including the a, b,
and blank tiles) that uniquely produces an N�N full square
such that

� N > 2 � �n.

� All binding domains on the left and bottom are of

strength 1 or 0.

� All binding domains on the right have the strength-1
blank label.

� The binding domains on the upper side conform to
the pattern xy�zb�a where x is a strength-2 binding

domain that occurs nowhere else, and y; z; b; and a are
distinct strength-1 binding domains.

We show that Sn exists for all n. The base case n = 1 is

trivial. The inductive step is illustrated in Figure 6. First,

0
*00

0
00

0
0
00

0*
0
00

1

0 n
00

n

00
1 n
11

n

11
1 c
11

n

00
0 c
00

c

11
0 x
00

x

00
1 x
11

x

11

0 n

*00
1 n

*11
1 c

*00
0 c

*11
0 x
*00

1 x
*11

0
00*

c 1
11*

n 0x

00*
1x

11*

x y* z b* a

0 c

*11
0 c
00

c

11

... 0 c
00

c

11
0 c
00

c

11

... 0
00*

c a

1 x
*11

1 x
11

x

11

... 1 x
11

x

11
1 x
11

x

11

... 1x

11*

0 x
*00

0 x
00

x

00

... 0 x
00

x

00
0 x
00

x

00

... 1x

11*

0 n

*00
0 n
00

n

00

... 0 n
00

n

00
0 n
00

n

00

... 1
11*

n b S
n+1

ne
w

 s
ee

d

0
*00

0
00

0

... 0
00

0*
0
00 ... 1 a

0 c

*1
0 c
0

c

1

... 0
0*

c ... a

0 n

*0
0
0*

c S
n

ol
d

se
ed

0
*0

1

A

Figure 6: Formation of N�N square using Oi:o:(log
�N) tiles. Given a set of tiles Sn that produce an N�N full

square that satis�es the recurrence, the addition of 22 new tiles results in Sn+1 and produces a (N + 2 �
2N) � (N + 2 � 2N) full square. New side labels (with doubled symbols) prevent counter tiles from Sn from

incorporating in the Sn+1 counter.

there are 5 tiles that, initiated by x, produce an initial
string of 0's for a new �xed-width counter, and provide a

strength-2 side for a new a-b diagonal. Then there are 16
tiles equivalent to the counter tiles in Theorem 3 but us-
ing new side labels; the counter counts to 2N . The diago-
nal �lls in the rest of the square, now with sides of length
N +2� 2N > 2N > 2 � �(n+ 1). Therefore Sn exists for all
n, and for those n,

22 log
�
N � 22n � K

2
SA(N):

log�N is an exceedingly slowly growing function; the above

construction shows that very large squares can be assembled
with a very small number of tiles. But we can do much bet-
ter yet! By embedding the simulation of a Turing machine
in the growth of a square we show that:

Theorem 5. K2
SA(N) = Oi:o:(f(N)) for f(N) any non-

decreasing unbounded computable function.

Proof. Our proof relies on a self-assembly version of the
Busy Beaver problem [Rado, 1962]. De�ne:

BT
SA(n) = maxfN s.t. (N; n) 2 SqT g:

To show Theorem 5, we �rst show

B
2
SA(n) =
(F (n)) for any computable function F (n):

(1)

Theorem 5 follows from (1) by contradiction: if false, then
there exists a computable, non-decreasing, unbounded func-

tion f(N) such that 9N0 s.t. 8N > N0; K
2
SA(N) � f(N).

Let F (n) = maxfN s.t. N = 0 or f(N) � ng; this is a com-
putable function. Note that B2

SA(n) � F (n) requires that
9(N;n) 2 Sq2 s.t. N � F (n) and therefore f(N) > n and
K2
SA(N) � n. For N > N0 this contradicts K2

SA(N) �
f(N). Therefore, for all n > f(N0), B

2
SA(n) < F (n), con-

tradicting (1) and establishing Theorem 5.

Recall that Bt(m) =
(F 0(m)) for any computable func-
tion F 0(m) where:

Bt(m) =maxft s.t. m = qs and there exists a

q-state, s-symbol Turing machine that

halts on a blank tape in t stepsg

Let M be a q-state, s-symbol Turing machine that halts
on a blank tape in Bt(m) steps, where m = qs. We will con-

struct a square of size N = 2Bt(m)+3 using n = 12qs+4s+9
tiles by simulating M with tiles, similar to the construc-
tion of Robinson [Robinson, 1971]. Given any n > 41, we
will use sn = 2, qn = bn�17

24
c, and mn = qnsn; our con-

struction will need only 12qnsn + 4sn + 9 < n tiles. Then
B2
SA(n) � 2Bt(mn) + 3 =
(F 0(mn)). For any computable

function F (n), we can �nd another computable function
F 0(m) s.t. 8n; F 0(mn) > F (n). Therefore, we arrive at
(1).

We construct the square by growing four identical sim-
ulations of the Turing machine M , one from each side of

a seed tile. Each simulation stays within one of the four

The three-state Busy Beaver machine:

A0 B1R A1 C1L

B0 A1L B1 B1R

C0 B1L C1 halt

for make read tiles and write tile qs q's'L q
s
qs

q
s
qs q' s'qs

for make read tiles and write tile qs q's'R q
s
qs

q
s
qs q's'

qs

 4 x left read tiles r
A0

r
A1

r
B0

r
B1

r
C0

r
C1

 4 x right read tiles r
A0

r
A1

r
B0

r
B1

r
C0

r
C1

 4 x write tiles w
A0

w
A1

w
B0

w
B1

w
C0

w
C1

 4 x symbol tiles 0 1

seed and initial tiles S IN IS IE IW

diagonal tiles NE SE SW NW

NW ... 0 0 1 1 1 1 w
C1 1 1 0 0 ... NE

NW NE

w
C0 1

NW 0 0 r
C0

w
A1 1 0 0 NE

NW 0 0 r
A1

w
B0 0 NE

NW 0 w
A0

r
B0 NE

NW IN NE

IW S IE

SW IS SE

SW SE

SW SE

SW SE

SW SE

Figure 7: Formation of an N�N square by growing four identical simulations of a given Turing machine. The

Busy Beaver machine simulated here has three states (q0 = A; q1 = B; q2 = C) and two symbols (s0 = 0; s1 = 1).
Note that R denotes right, L denotes left, and \4x" indicates that four variations of a tile are used, one for

each compass direction.

regions bounded by the diagonals of the square; when M
halts, the square is complete. We require 4 tiles to create
the four \half-diagonals" de�ning these boundaries between
simulations. For each simulation we require 1 \initial state"
that matches the seed tile, s symbol tiles, qs write tiles, and
2qs read tiles, giving a total of 3qs + s + 1 tiles per sim-

ulation. We describe these tiles for the TM simulation to
the north of the seed tile. Recall that a tile is a 4-tuple
(�N ; �E; �S; �W) representing the north, east, south, and
west binding domains. Binding domain strengths are 1 un-
less noted. Each of the four simulations has its own version
of the side labels described, distinguished by superscripts

(we omit the superscript N from the description of north-
facing simulation below). The symbol tile for symbol s is
(�s; �e; �s; �e), where �s is a binding domain representing
the symbol s and �e is a binding domain indicating that
the TM head is not present. For each state-symbol pair
(q; s), the left read tile (�q;s; �e; �s; �q) and the right read

tile (�q;s; �q; �s; �e) represent the TM head in state q enter-
ing a tape cell (from the left or from the right) and reading
the symbol s. The binding domains �q;s have strength 2;
this is necessary for the TM head to enter the next row of
the simulation. The write tiles, representing the action the

TM head takes, depend on the form of the state transition
table entry. For each entry of the form (q; s) ! (q0; s0; L)
there is a write tile (�s0 ; �e; �q;s; �q0); for each entry of the
form (q; s)! (q0; s0; R) there is a write tile (�s0 ; �q0 ; �q;s; �e);
for each entry of the form (q; s)! halt there is a write tile
(�halt; �e; �q;s; �e).

To start the Turing Machine in state q0 reading the blank
symbol s0, the initial tile for the northern simulation is
IN = (�q0;s0 ; �e; �S ; �e), where �S is a strength-2 bind-
ing domain. The initial tiles for all four simulations bind

to the seed tile S = (�NS ; �
E
S ; �

S
S ; �

W
S). The four diagonal

tiles, NW = (�Ns0 ; �
N
e ; �

W
e ; �Ws0), NE = (�Ns0 ; �

E
s0
�Ee ; �

N
e ;),

SE = (�Ee ; �
E
s0
; �Ss0 ; �

S
e), and SW = (�We ; �Se ; �

S
s0
; �Ws0) pad

the tapes with extra cells containing the blank symbol s0
and delimit the four simulations.

Theorem 4 gives the construction of in�nite number of

very large squares made from a very small number of tile
types. Theorem 5 implies that, for an in�nite set of N , the
number of tiles required to assemble an N�N square can be
made \arbitrarily small". How well can one do in general?
Unfortunately, extremely concise self-assembly programs are
not common. Then we show:

Theorem 6. K2
SA(N) =
a:a:(

logN

log logN
).

Proof. The Kolmogorov complexity of an integerN with

respect to a universal Turing machine U is

KU(N) = min jpj s.t. U(p) = #N

where #N is the binary string representing N . (See [Li
and Vitanyi, 1997] for results on Kolmogorov complexity.)

Recall that KU (N) < dlogNe � � for at most 1
2

�
of all

N , by the pidgeonhole principle. Therefore, for any � > 0,
KU(N) > (1� �) logN for almost all N .

There exists a Turing machine SA2 (with program pSA2)
that, given a binary description of a T = 2 tile system, sim-
ulates their self-assembly, making an arbitrary choice when
multiple tile additions are possible, and returns the maximal
dimension of the resulting assembly if self-assembly termi-

nates. A tile system T with n tiles can be described by dT

containing f(n) = 4ndlog 3ne bits; each of 4n sides may have

a strength in f0; 1; 2g, and non-zero-strength labels may be
de�ned by the �rst tile (in some arbitrary order) with the
same tile on the opposite side. Thus if tile systemT uniquely
produces an N�N full square, then p = pSA2dT will return
#N when input to U . Therefore, for almost all N ,

(1� �) logN < KU (N) � jpSA2j+ f(K
2
SA(N))

< C1 + C2K
2
SA(N)[C3 + log logN];

where we used K2
SA(N) = O(logN) from Theorem 3. The

�nal result follows from simple algebra.

In other words, a Kolmogorov-random integer N cannot

be compressed by the self-assembly model.

4. DISCUSSION
Tiles or labels. This paper discussed the program-size
complexity of self-assembled squares, where complexity was

measure by the number of distinct tile types involved. An
alternative complexity measure is the minimum number of
distinct side labels required to uniquely produce the object.
The number of labels will be relevant in a physical system
where the number of distinct binding interactions is limited
due to imperfect speci�city of binding. Do both measures

give asymptotically similar results?

Kolmogorov complexity. A main conclusion of this
paper is that the program-size complexity of self-assembled
objects (at T = 2) looks remarkably similar to the usual
program-size complexity with respect to Turing machines.

This is hardly surprising, since self-assembly at T = 2 can
simulate Turing machines. However, Figure 8 makes K2

SA

look perhaps more similar to KU than it ought to: K2
SA is

computable due to the monotonic nature of self-assembly
growth (each tile set can be simulated in turn until it halts

or exceeds an N�N region), whereas of course KU is not
computable.

Disintegration. The di�erence between K2
SA and KU

comes from the monotonic nature of self-assembly: the grow-
ing object always gets bigger, so \temporary results" cannot

be larger than the object itself. A simple device circumvents
this di�culty: select a subset D � T ; after self-assembly is
complete, the tiles in D are destroyed in all assemblies in
Term(T), and the resulting assemblies are considered the
output of the computation. A molecular implementation
might make the tiles in D out of RNA, while the tiles in

T r D are DNA; then, an RNase enzyme can be used to
destroy all tiles in D.

Let K̂2
SA be the full square complexity for the model with

disintegration. The ability of T = 2 self-assembly to sim-
ulate Turing machines can now be used to make squares:

given a Turing machine program p such that U(p) = #N ,
we generate C + jpj tiles (all in D) that simulate p and ex-
pand the result into a template of length N . Now a few
�nal tiles (not in D) complete the square; only this square

will survive disintegration. Thus K̂2
SA < KU(N) + C; we

already know KU (N) = O(K̂2
SA(N) log logN). That is, the

only di�erence is that K̂2
SA measures the number of tiles

instead of the number of bits required to specify the tiles.

5. ACKNOWLEDGEMENTS
We thank Len Adleman for discussions and for raising the
questions that motivate this paper. We thank Richard Lip-
ton, John Reif, Ming-Deh Huang, Ashish Goel, Qi Cheng,
Lior Pachter and Lisa O'Rourke for comments and discus-
sions.

6. REFERENCES
Adleman, L. M. (1994). Molecular computation of

solutions to combinatorial problems. Science,
266:1021{1024.

Adleman, L. M. (unpublished manuscript, 2000).

Toward a mathematical theory of self-assembly.

Bennett, C. H. (1982). The thermodynamics of
computation { a review. International Journal of

Theoretical Physics, 21(12):905{940.

Berger, R. (1966). The undecidability of the domino
problem. Memiors of the AMS, 66:1{72.

Bowden, N., Choi, I., Gryzbowski, B., and Whitesides,
G. (1999). Mesoscale self-assembly of hexagonal plates
using lateral capillary forces: Synthesis using the
\capillary bond". Journal of the American Chemical

Society, 121:5373{5391.

Bowden, N., Terfort, A., Carbeck, J., and Whitesides, G.
(1997). Self-assembly of mesoscale objects into ordered

two-dimensional arrays. Science, 276:233{235.

Hjelmfelt, A. and Ross, J. (1995). Implementation of
logic functions and computations by chemical kinetics.

Physica D, 84:180{193.

Hosokawa, K., Shimoyama, I., and Miura, H. (1996).
Two-dimensional micro-self-assembly using the surface

tension of water. Sensors and Actuators A, 57:117{125.

Kurtz, S. A., Mahaney, S. R., Royer, J. S., and Simon,
J. (1997). Biological computing. In Hemaspaandra, L. A.

and Selman, A. L., editors, Complexity Theory

Retrospective II, pages 179{195. Springer.

Li, M. and Vitanyi, P. (1997). An Introduction to

Kolmogorov Complexity and Its Applications (Second

Edition). Springer Verlag, New York.

Mackay, A. (1995). Generalised crystallography. Journal
of Molecular Structure (Theochem), 336:293{303.

Magnasco, M. O. (1997). Chemical kinetics is Turing
universal. Physical Review Letters, 78(6):1190{1193.

Markov, I. V. (1995). Crystal Growth for Beginners:

fundamentals of nucleation, crystal growth, and epitaxy.
World Scienti�c, Singapore.

Ptashne, M. (1992). A Genetic Switch, 2nd ed. Cell
Press & Blackwell.

Radin, C. (1991). Global order from local sources.
Bulletin of the AMS, 25(2):335{364.

Rado, T. (1962). On non-computable functions. Bell

System Technical Journal, 41(3):877{884.

N

n

The Set Sq2

1000 2000 3000 4000 5000 6000 7000 8000

12

10

8

6

4

2

Figure 8: Artist's impression of the set Sq2 of pairs (N;n) where n tiles produce an N�N full square(black).

K2
SA(N) is the lowest point in a column; the vertical lines are due to the fact that (N;n) 2 Sq2 =) (N;n+1) 2

Sq2. B2
SA(n) is the rightmost point in a row.

Robinson, R. M. (1971). Undecidability and
nonperiodicity of tilings of the plane. Inventiones Math.,
12:177{209.

Rothemund, P. W. K. (2000). Using lateral capillary
forces to compute by self-assembly. Proceedings of the

National Academy of Sciences, 97:984{989.

Schectman, D., Blech, I., Gratias, D., and Cahn, J.
(1984). Metallic phase with long-range orientational
order and no translational symmetry. Phys. Rev. Lett.,
53:1951{1953.

Seeman, N. C. (1998). DNA nanotechnology: novel DNA
constructions. Annual Review of Biophysics and

Biomolecular Structure, 27:225{248.

Senechal, M. (1995). Quasicrystals and geometry.
Cambridge University Press, Cambridge.

Wang, H. (1961). Proving theorems by pattern
recognition. II. Bell System Technical Journal, 40:1{42.

Wang, H. (1963). Dominoes and the AEA case of the
decision problem. In Fox, J., editor, Mathematical

Theory of Automata, pages 23{55, Brooklyn, New York.
Polytechnic Press.

Winfree, E. (1996). On the computational power of

DNA annealing and ligation. In Lipton, R. J. and Baum,
E. B., editors, DNA Based Computers: DIMACS

Workshop, April 4, 1995, volume 27, pages 199{221,
Providence, RI. American Mathematical Society.

Winfree, E. (preliminary, 1998). Simulations of

computing by self-assembly. In Kari, L., Rubin, H., and

Wood, D. H., editors, Proceedings of the 4th DIMACS

Meeting on DNA Based Computers, held at the

University of Pennsylvania, June 16-19, 1998.

Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C.
(1998a). Design and self-assembly of two-dimensional
DNA crystals. Nature, 394:539{544.

Winfree, E., Yang, X., and Seeman, N. C. (1998b).
Universal computation via self-assembly of DNA: Some

theory and experiments. In Landweber, L. F. and Baum,
E. B., editors, DNA Based Computers II: DIMACS

Workshop, June 10-12, 1996, volume 44, Providence, RI.
American Mathematical Society.

