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Semidefinite programming relaxations for semialgebraic
problems

Abstract. A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions re-
ducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete
family of polynomially sized semidefinite programming conditions that prove infeasibility. The main tools
employed are a semidefinite programming formulation of the sum of squares decomposition for multivariate
polynomials, and some results from real algebraic geometry. The techniques provide a constructive approach
for finding bounded degree solutions to the Positivstellensatz, and are illustrated with examples from diverse
application fields.
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1. Introduction

Numerous questions in applied mathematics can be formally expressed using a finite
number of polynomial equalities and inequalities. Well-known examples are optimiza-
tion problems with polynomial objective and constraints, such as quadratic, linear, and
boolean programming. This is a fairly broad class, including problems with a combina-
tion of continuous and discrete variables, and easily seen to be NP-hard in the general
case.

In this paper we introduce a new approach to the formulation of computable relax-
ations for this kind of problems. The crucial enabling fact is the computational tractabil-
ity of the sum of squares decomposition for multivariate polynomials, coupled with
powerful results from semialgebraic geometry. As a result, a whole new class of con-
vex approximations for semialgebraic problems is obtained. The results generalize in a
very natural way existing successful approaches, including the well-known semidefinite
relaxations for combinatorial optimization problems.

The paper includes notions from traditionally separated research areas, namely nu-
merical optimization and real algebra. In the interest of achieving the broadest possible
communication of the main ideas, we have tried to make this article as self-contained
as possible, providing a brief introduction to both semidefinite programming and real
algebra. It is our belief that there is a lot of potential in the interaction between these
fields, particularly with regard to practical applications. Most of the material in the pa-
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per is from the author’s dissertation [Par00b], with the addition of new examples and
references.

The paper is organized as follows: in Section 2 the problem of global nonnegativ-
ity of polynomial functions is introduced, and existing approaches are discussed. The
sum of squares decomposition is presented as a sufficient condition for nonnegativity.
In Section 3 a brief review of semidefinite programming is presented, and it is shown
how to compute sum of squares decompositions by solving a semidefinite program. In
the following section, some basic elements of semialgebraic geometry are described,
and the Positivstellensatz is stated. Our main result (Theorem 5.1) follows, showing
how the sum of squares decision procedure allows for the search of bounded degree
solutions to the Positivstellensatz equation. We present next a refutation-based interpre-
tation of the methodology, as well as a comparison with earlier related work. Section 6
contains some observations on the computational aspects of the implementation of the
techniques. In Section 7, a sample of applications from different applied mathematics
areas are presented. These include, among others, enhanced semidefinite relaxations for
quadratic programming problems, and stronger conditions for matrix copositivity.

1.1. Notation

The notation is mostly standard. The inner product between two vectors inRn is de-
fined as〈x, y〉 :=

∑n
i=1 xiyi. Let Sn ⊂ Rn×n be the space of symmetricn × n real

matrices, with inner product betweenX,Y ∈ Sn being〈X, Y 〉 := traceXY . A matrix
M ∈ Sn is positive semidefinite(PSD) if xT Mx ≥ 0, ∀x ∈ Rn. Equivalently,M is
positive semidefinite if all its eigenvalues are nonnegative. LetSn

+ be the self-dual cone
of positive semidefinite matrices, with the notationA º B indicating thatA − B is
positive semidefinite.

2. Global nonnegativity

A fundamental question appearing in many areas of applied mathematics is that of
checking global nonnegativity of a function of several variables. Concretely, given a
functionF , we have the following:

Problem 2.1.Provide checkable conditions or a procedure for verifying the validity of
the proposition

F (x1, . . . , xn) ≥ 0, ∀x1, . . . , xn ∈ R. (2.1)

This is a fundamental mathematical problem, that appears in numerous application do-
mains, and towards which considerable research efforts have been devoted. In order to
study the problem from a computational viewpoint, and avoid undecidability results, it
is clear that further restrictions on the class of functionsF should be imposed. How-
ever, at the same time we would like to keep the problem general enough, to enable the
practical applicability of the results. A good compromise is achieved by considering the
case ofmultivariate polynomials.
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Definition 2.2. A polynomialf in x1, . . . , xn is a finite linear combination of monomi-
als:

f =
∑
α

cαxα =
∑
α

cαxα1
1 . . . xαn

n , cα ∈ R, (2.2)

where the sum is over a finite number ofn-tuplesα = (α1, . . . , αn), αi ∈ N0. The set
of all polynomials inx1, . . . , xn with real coefficients is written asR[x1, . . . , xn].

The total degreeof the monomialxα is equal toα1 + · · · + αn. The total degree of a
polynomial is equal to the highest degree of its component monomials.

An important special case is that ofhomogeneous polynomials(or forms), where all
the monomials have the same total degree.

Definition 2.3. A form is a polynomial where all the monomials have the same total
degreed. In this case, the polynomial ishomogeneousof degreed, since it satisfies
f(λx1, . . . , λxn) = λdf(x1, . . . , xn).

It is well-known that there is a correspondence between forms and polynomials. A form
in n variables and degreem can be dehomogenized to a polynomial inn−1 variables, of
degree less than or equal tom, by fixing any variable to the constant value1. Conversely,
given a polynomial, it can be converted into a form by multiplying each monomial by
powers of a new variable, in such a way that the total degree of all monomials are the
same.

The set of forms inn variables and degreem can be associated with a vector space
of dimension

(
n+m−1

m

)
. Similarly, the set of polynomials of total degree less than or

equal tom is a vector space of dimension
(
n+m

m

)
. These quantities will be important

later in the study of the efficiency of the computational implementation of the proposed
methodology.

2.1. Exact and approximate approaches

It is a fact that many problems in applied mathematics can be formulated using only
polynomial equalities and inequalities, which are satisfied if and only if the problem
has a solution. In this regard, Tarski’s results on the existence of a decision procedure
for elementary algebra over the reals, settles the decidability of Problem 2.1 for this
quite large class of problems.

WhenF is a polynomial, the Tarski-Seidenberg decision procedure [BCR98,Mis93,
Bos82] provides an explicit algorithm for deciding if (2.1) holds, so the problem is de-
cidable. There are also a few alternative approaches to effectively answer this question,
also based in decision algebra; see [Bos82] for a survey of classical available tech-
niques, and [BPR96] for more efficient recent developments.

Regarding complexity, the general problem of testing global nonnegativity of a
polynomial function is NP-hard (when the degree is at least four), as easily follows
from reduction from the matrix copositivity problem; see [MK87] and Section 7.5.
Therefore, unless P=NP,any methodguaranteed to obtain the right answerin every
possible instancewill have unacceptable behavior for problems with a large number of
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variables. This is the main drawback of theoretically powerful methodologies such as
quantifier elimination.

If we want to avoid the inherent complexity roadblocks associated with theexact
solution, an attractive option is to settle for approximate answers, that are “reasonably
close” to the original question. The issue therefore arises: are there conditions, that
can be efficiently tested, that guarantee global nonnegativity of a function? As we will
see in Section 3.2, one such condition is given by the existence of a sum of squares
decomposition.

3. Sums of squares and SDP

Before presenting the details of our approach, we take a brief detour in the following
subsection to present the basic ideas behind the convex optimization techniques used,
namely semidefinite programming.

3.1. Semidefinite programming background

In this section we present a brief introduction to semidefinite programming (SDP). We
refer the reader to [VB96] for an excellent survey of the theory and applications, and
[WSV00] for a comprehensive treatment of the many aspects of the subject. SDP can be
understood as a generalization of linear programming, where the nonnegative orthant
constraint in the latter is replaced instead by the cone of positive semidefinite matrices.

A semidefinite program is defined as the optimization problem:

minimize 〈C, X〉
subject to〈Ai, X〉 = bi

X º 0,
(3.1)

whereX ∈ Sn is the decision variable,b ∈ Rm andC, Ai ∈ Sn are given symmetric
matrices. A geometric interpretation is the optimization of a linear functional, over
the intersection of an affine subspace and the self-dual cone of positive semidefinite
matrices.

The crucial feature of semidefinite programs is itsconvexity, since the feasible set
defined by the constraints above is convex. For this reason, semidefinite programs have
a nice duality structure, with the associated dual program being:

maximize 〈b, y〉
subject to

∑m
i=1 yiAi ¹ C,

(3.2)

wherey ∈ Rm. Any feasible solution of the dual provides a lower bound on the achiev-
able values of the primal; conversely, feasible primal solutions give upper bounds on
dual solutions. This is known asweak dualityand follows since:

〈C,X〉−〈b, y〉 = 〈C,X〉−
m∑

i=1

yibi = 〈C, X〉−
m∑

i=1

yi〈Ai, X〉 = 〈C−
m∑

i=1

yiAi, X〉 ≥ 0,
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with the last inequality being true because of self-duality of the PSD cone. Under stan-
dard constraint qualifications (for instance, existence of strictly feasible points),strong
dualityholds, and the primal and the dual problems achieve exactly the same value.

Theorem 3.1.Consider the primal-dual SDP pair (3.1)-(3.2). If either feasible set has
has a nonempty interior, then for everyε > 0, there exist feasibleX, y such that
〈C,X〉 − 〈b, y〉 < ε. Furthermore, if both feasible sets have nonempty interiors, then
the optimal solutions are achieved by someX?, y?.

From a computational viewpoint, semidefinite programs can be efficiently solved, both
in theory and in practice. In the last few years, research on SDP has experienced an
explosive growth, particularly in the areas of algorithms and applications. Two of the
main reasons for this practical impact are the versatility of the problem formulation,
and the availability of high-quality software, such as SeDuMi [Stu99].

3.2. The sum of squares decomposition

If a polynomialF satisfies (2.1), then an obvious necessary condition is that its degree
be an even number. A deceptively simple sufficient condition for a real-valued polyno-
mial F (x) to be nonnegative is the existence of a sum of squares decomposition:

F (x) =
∑

i

f2
i (x), fi(x) ∈ R[x]. (3.3)

It is clear that if a given polynomialF (x) can be written as above, for some polynomials
fi, thenF is nonnegative for all values ofx.

Two questions immediately arise:

– When is such decomposition possible?
– How do we compute it?

For the case of polynomials, the first question is a well-analyzed problem, first stud-
ied by David Hilbert more than a century ago. In fact, one of the items in his famous
list of twenty-three unsolved problems presented at the International Congress of Math-
ematicians at Paris in 1900, deals with the representation of a definite form as a sum
of squares of rational functions. The reference [Rez00] contains a beautiful survey by
Reznick of the fascinating history of this problem, and pointers to most of the available
results.

For notational simplicity, we use the notationSOSfor “sum of squares.” Hilbert
himself noted that not every nonnegative polynomial is SOS. A simple explicit coun-
terexample is the Motzkin form (here, forn = 3)

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2. (3.4)

Positive semidefiniteness can be easily shown using the arithmetic-geometric inequality
(see also Example 7.3), and the nonexistence of a SOS decomposition follows from
standard algebraic manipulations (see [Rez00] for details), or the procedure outlined
below.



6 Pablo A. Parrilo

Following the notation in references [CLR95,Rez00], letPn,m be the set of non-
negative forms of degreem in n variables, andΣn,m the set of formsp such that
p =

∑
k h2

k, wherehk are forms of degreem/2. Hilbert gave a complete character-
ization of when these two classes are equivalent.

Theorem 3.2 (Hilbert). LetPn,m, Σn,m be as above. ThenΣn,m ⊆ Pn,m, with equal-
ity holding only in the following cases:

– Bivariate forms:n = 2.
– Quadratic forms:m = 2.
– Ternary quartics:n = 3,m = 4.

By dehomogenization, we can interpret these results in terms of polynomials (not nec-
essarily homogeneous). The first case corresponds to the equivalence of the nonnega-
tivity and SOS conditions for polynomials in one variable. This is easy to show using
a factorization of the polynomial in linear and quadratic factors. The second one is the
familiar case of quadratic polynomials, where the sum of squares decomposition fol-
lows from an eigenvalue/eigenvector factorization. The somewhat surprising third case
corresponds to quartic polynomials in two variables.

The effective computation of the sum of squares decomposition has been analyzed
from different viewpoints by several authors. In the author’s opinion, there are two main
sources, developed independently in unrelated fields. On the one hand, from a convex
optimization perspective, the sum of squares decomposition is clearly the underlying
machinery in Shor’s global bound for polynomial functions (see Example 7.1), as is ex-
plicitly mentioned in [Sho87,Sho98]. On the other hand, from an algebraic perspective,
it has been presented as the “Gram matrix” method and analyzed extensively by Choi,
Lam and Reznick [CLR95], though undoubtedly there are traces of it in the authors’
earlier papers.

An implementation of the Gram matrix method is presented in Powers and Wörmann
[PW98], though no reference to convexity is made: the resulting SDPs are solved via
inefficient, though exact, decision methods. In the control theory literature, related
schemes appear in [BL68], and [HH96] (note also the important correction in [Fu98]).
Specific connections with SDP, resembling the ones developed here, have also been
explored independently by Ferrier [Fer98], Nesterov [Nes00], and Lasserre [Las01].

The basic idea of the method is the following: express the given polynomialF (x)
of degree2d as a quadratic form in all the monomials of degree less than or equal tod
given by the different products of thex variables. Concretely:

F (x) = zT Qz, z = [1, x1, x2, . . . xn, x1x2, . . . , x
d
n], (3.5)

with Q being a constant matrix. The length of the vectorz is equal to
(
n+d

d

)
. If in

the representation above the matrixQ is positive semidefinite, thenF (x) is clearly
nonnegative. However, since the variables inz arenot algebraically independent, the
matrixQ in (3.5) is not unique, andQ may be PSD for some representations but not for
others. By simply expanding the right-hand side of (3.5), and matching coefficients of
x, it is easily shown that the set of matricesQ that satisfy (3.5) is anaffine subspace.

If the intersection of this subspace with the positive semidefinite matrix cone is
nonempty, then the original functionF is guaranteed to be SOS (and therefore nonneg-
ative). This follows from an eigenvalue factorization ofQ = TT DT, di ≥ 0, which
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produces the sum of squares decompositionF (x) =
∑

i di(Tz)2i . Notice that the num-
ber of squares in the representation can always be taken to be equal to the rank of the
matrix Q. For the other direction, ifF can indeed be written as the sum of squares of
polynomials, then expanding in monomials will provide the representation (3.5). By the
above arguments, the following is true:

Theorem 3.3.The existence of a sum of squares decomposition of a polynomial inn
variables of degree2d can be decided by solving a semidefinite programming feasibility
problem. If the polynomial is dense (no sparsity), the dimensions of the matrix inequality
are equal to

(
n+d

d

)× (
n+d

d

)
.

In this specific formulation, the theorem appears in [Par00b,Par00a]. As we have dis-
cussed more extensively in those works and the previous paragraphs, the crucial opti-
mization oriented convexity ideas can be traced back to Shor, who explored them at a
time before the convenient language of the SDP framework had been fully established.

Notice that the size of the resulting SDP problem is polynomial in bothn or d if
the other one is fixed. However, it is not jointly polynomial if both the degree and the
number of variables grow:

(
2n
n

)
grows exponentially withn (but in this case, the size of

the problem description also blows up).

Remark 3.4.If the input polynomialF (x) is homogeneousof degree2d, then it is suf-
ficient to restrict the components ofz to the monomials of degree exactly equal tod.

Example 3.5.Consider the quartic form in two variables described below, and define
z1 := x2, z2 := y2, z3 := xy:

F (x, y) = 2x4 + 2x3y − x2y2 + 5y4

=




x2

y2

xy




T 


q11 q12 q13

q12 q22 q23

q13 q23 q33







x2

y2

xy




= q11x
4 + q22y

4 + (q33 + 2q12)x2y2 + 2q13x
3y + 2q23xy3

Therefore, in order to have an identity, the following linear equalities should hold:

q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q13 = 2, 2q23 = 0. (3.6)

A positive semidefiniteQ that satisfies the linear equalities can then be found using
semidefinite programming. A particular solution is given by:

Q =




2 −3 1
−3 5 0

1 0 5


 = LT L, L =

1√
2

[
2 −3 1
0 1 3

]
,

and therefore we have the sum of squares decomposition:

F (x, y) =
1
2
(2x2 − 3y2 + xy)2 +

1
2
(y2 + 3xy)2.
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Example 3.6.The following example is from [Bos82, Example 2.4], where it is required
to find whether or not the quartic polynomial,

P (x1, x2, x3) = x4
1 − (2x2x3 + 1)x2

1 + (x2
2x

2
3 + 2x2x3 + 2),

is positive definite. In [Bos82], this property is established using decision algebra.
By constructing theQ matrix as described above, and solving the corresponding

SDPs, we obtain the sums of squares decomposition:

P (x1, x2, x3) = 1 + x2
1 + (1− x2

1 + x2x3)2,

that immediately establishes global positivity. Notice that the decomposition actually
proves a stronger fact, namely thatP (x1, x2, x3) ≥ 1 for all values ofxi. This lower
bound is optimal, since for instanceP (0, 1,−1) = 1.

There are two crucial properties that distinguish the sum of squares viewpoint from
other approaches to the polynomial nonnegativity problem:

– The relativetractability, since the question now reduces to efficiently solvable SDPs.
– The fact that the approach can be easily extended to the problem offindinga sum

of squares polynomial, in a given convex set.

To see this last point, consider the polynomial familyp(x, λ), wherep(x, λ) is affine
in λ, with the parameterλ belonging to a convex setC ⊆ Rn defined by semidefinite
constraints. Then, the search overλ ∈ C for a p(x, λ) that is a sum of squares can be
posed as a semidefinite program. The argument is exactly as before: writingP (x, λ) =
zT Qz and expanding, we obtain linear equations among the entries ofQ andλ. Since
bothQ areλ are defined by semidefinite constraints, the result follows.

This last feature will be the critical one in the application of the techniques to practi-
cal problems, and in extending the results to the general semialgebraic case in Section 4.

3.3. The dual problem

It is enlightening to analyze the dual problem, that gives conditions on when a poly-
nomial F (x) is not a sum of squares. Obviously, one such case is whenF (x) takes
a negative value for somex = x0. However, because of the distinction between the
nonnegativity and SOS conditions, other cases are possible.

By definition, the dual of the sum of squares cone are the linear functionals that
take nonnegative values on it. Obviously, these should depend only the coefficients of
the polynomial, and not on the specific matrixQ in the representationF (x) = zT Qz.
Two possible interpretations of the dual functionals are as differential forms [PS01], or
as truncated moment sequences [Las01]. As mentioned in the first paragraph, not all the
elements in the dual cone will arise from pointwise function evaluation ofF .

GivenF (x), consider any representation:

F (x) = zT Qz = tracezzT Q,

wherez is the vector of monomials in (3.3), andQ is not necessarily positive semidef-
inite. The matrixzzT has rank one, and due to the algebraic dependencies among the
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components ofz, many of its entries are repeated. Replace now the matrixzzT by
another oneW , of the same dimensions, that is positive semidefinite and satisfies the
same dependencies among its entries aszzT does. Then, by construction, the pairing
〈W,Q〉 = traceWQ will not depend on the specific choice ofQ, as long as it represents
the same polynomialF .

Example 3.7.Consider again Example 3.5, wherez1 = x2, z2 = y2, z3 = xy. In this
case, the dual variable is:

W =




w11 w12 w13

w12 w22 w23

w13 w23 w33


 , zzT =




z2
1 z1z2 z1z3

z1z2 z2
2 z2z3

z1z3 z2z3 z2
3


 , (3.7)

and the constraint thatz1z2 = z2
3 translates into the conditionw12 = w33. We can

easily verify that, after substitution with the coefficients ofF , the inner product

〈W,Q〉 = trace




w11 w33 w13

w33 w22 w23

w13 w23 w33







q11 q12 q13

q12 q22 q23

q13 q23 q33




= w11q11 + w33(q33 + 2q12) + 2q13w13 + w22q22 + 2w23q23

= 2w11 − w33 + 2w13 + 5w22,

does not depend on the elements ofQ, but only on the coefficients themselves.

Now, givenanyQ representingF (x), it is clear that a sufficient condition forF not
to be a sum of squares is the existence of a matrixW as above satisfying

traceWQ < 0, W º 0.

The reason is the following: ifF (x) was indeed a sum of squares, then there would exist
a QSOS º 0 representingF . By construction, the expression above is independent
of the choice ofQ (as long as it represents the same polynomial), and therefore by
replacingQ by the hypotheticalQSOS we immediately reach a contradiction, since in
that case the trace term would be nonnegative, as bothW andQSOS are PSD.

The dual problem gives direct insight into the process of checking, after solving the
SDPs, whether the relaxation wasexact, since if there exists anx∗ such thatF (x∗) =∑

f2
i (x∗) = 0, then it should necessarily be a common root of all thefi. The simplest

instance occurs when the obtained dual matrixW hasrank one, and the components
of the corresponding factorization verify theconstraintssatisfied by thezi variables, in
which case the pointx∗ can be directly recovered from the entries ofW .

4. Real algebra

At its most basic level, algebraic geometry deals with the study of the solution set of a
system of polynomial equations. From a more abstract viewpoint, it focuses on the close
relationship between geometric objects and the associated algebraic structures. It is a
subject with a long and illustrious history, and many links to seemingly unconnected
areas of mathematics, such as number theory.
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Increasingly important in the last decades, particularly from a computational view-
point, is the fact that new algorithms and methodologies (for instance, Gröbner basis)
have enabled the study of very complicated problems, not amenable to paper and pencil
calculations.

In this section, a few basic elements from algebraic geometry are presented. For
comparison purposes and clarity of presentation, we present both the complex and real
cases, though we will be primarily concerned with the latter. An excellent introduc-
tory reference for the former is [CLO97], with [BCR98] being an advanced research
treatment of the real case.

The usual name for the specific class of theorems we use isStellens̈atze, from the
German words Stellen (places) and Satz (theorem). The first such result was proved
by Hilbert, and deals with the case of an algebraically closed field such asC. Since
in many problems we are interested in the real roots, we need to introduce the Artin-
Schreier theory of formally real fields, developed along the search for a solution of
Hilbert’s 17th problem.

4.1. The complex case: Hilbert’s Nullstellensatz

Let the ring of polynomials with complex coefficients inn variables beC[x1, . . . , xn].
Recall the definition of a polynomial ideal [CLO97]:

Definition 4.1. The setI ⊆ C[x1, . . . , xn] is an ideal if it satisfies:

1. 0 ∈ I.
2. If a, b ∈ I, thena + b ∈ I.
3. If a ∈ I andb ∈ C[x1, . . . , xn], thena · b ∈ I.

Definition 4.2. Given a finite set of polynomials(fi)i=1,...,s, define the set

〈f1, . . . , fs〉 :=

{
s∑

i=1

figi, gi ∈ C[x1, . . . , xn]

}

It can be easily shown that the set〈f1, . . . , fs〉 is an ideal, known as the idealgenerated
by thefi.

The result we present next is the Nullstellensatz due to Hilbert. The theorem es-
tablishes a correspondence between the set of solutions of polynomials equations (a
geometric object known as anaffine variety), and a polynomial ideal (an algebraic con-
cept). We state below a version appropriate for our purposes:

Theorem 4.3 (Hilbert’s Nullstellensatz).
Let (fj)j=1,...,s, be a finite family of polynomials inC[x1, . . . , xn]. Let I be the

ideal generated by(fj)j=1,...,s. Then, the following statements are equivalent:

1. The set
{x ∈ Cn | fi(x) = 0, i = 1, . . . , s} (4.1)

is empty.
2. The polynomial1 belongs to the ideal, i.e.,1 ∈ I.
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3. The ideal is equal to the whole polynomial ring:I = C[x1, . . . , xn].
4. There exist polynomialsgi ∈ C[x1, . . . , xn] such that:

f1(x)g1(x) + · · ·+ fs(x)gs(x) = 1. (4.2)

The “easy” sufficiency direction (4 ⇒ 1) should be clear: if the identity (4.2) is sat-
isfied for some polynomialsgi, and assuming there exists a feasible pointx0, after
evaluating (4.2) atx0 we immediately reach the contradiction 0=1. The hard part of the
theorem, of course, is proving the existence of the polynomialsgi.

The Nullstellensatz can be directly applied to prove the nonexistence ofcomplex
solutions for a given system of polynomial equations. The polynomialsgi provide a
certificate(sometimes called a Nullstellensatz refutation) that the set described by (4.1)
is empty. Given thegi, the identity (4.2) can be efficiently verified. There are at least
two possible approaches to effectively find polynomialsgi:

Linear algebra. The first one depends on having explicit bounds on the degree of the
productsfigi. A number of such bounds are available in the literature; see for in-
stance [Bro87,Kol88,BS91]. For example, if the polynomialsfi(x) have maximum
degreed, andx ∈ Cn, then the bound

degfigi ≤ max(3, d)n

holds. The bound is tight, in the sense that there exist specific examples of systems
for which the expression above is an equality. Therefore, given a upper bound on
the degree, and a parameterization of the unknown polynomialsgi, a solution can
be obtained by solving a system of linear equations. It is also possible to attempt
to search directly for low-degree solutions, since the known bounds can also be
extremely conservative.

Gröbner basis. An alternative procedure uses Gröbner basis methods [CLO97,Mis93].
By Hilbert’s Basis theorem, every polynomial ideal is finitely generated. Gröbner
bases provide a computationally convenient representation for a set of generating
polynomials of an ideal. As a byproduct of the computation of a Gröbner basis of
the idealI, explicit expressions for the polynomialsgi can be obtained.

Example 4.4.As an example of a Nullstellensatz refutation, we prove that the following
system of polynomial inequalities does not have solutions overC.

f1(x) := x2 + y2 − 1 = 0
f2(x) := x + y = 0
f3(x) := 2x3 + y3 + 1 = 0.

To show this, consider the polynomials

g1(x) := 1
7 (1− 16x− 12y − 8xy − 6y2)

g2(x) := 1
7 (−7y − x + 4y2 − 16 + 12xy + 2y3 + 6y2x)

g3(x) := 1
7 (8 + 4y).

After simple algebraic manipulations, we verify that

f1g1 + f2g2 + f3g3 = 1,

proving the nonexistence of solutions overC.
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4.2. The real case: Positivstellensatz

The conditions in the Nullstellensatz are necessary and sufficient only in the case when
the field is algebraically closed (as in the case ofC). When this requirement does not
hold, only the sufficiency argument is still valid. A simple example is the following:
over the reals, the equation

x2 + 1 = 0

does not have a solution (i.e., the associated real variety is empty). However, the corre-
sponding polynomial ideal does not include the element1.

When we are primarily interested in real solutions, the lack of algebraic closure of
R forces a different approach, and the theory should be modified accordingly. This led
to the development of the Artin-Schreier theory offormally real fields; see [BCR98,
Raj93] and the references therein.

The starting point is one of the intrinsic properties ofR:

n∑

i=1

x2
i = 0 =⇒ x1 = . . . = xn = 0. (4.3)

A field is formally real if it satisfies the above condition. The theory of formally real
fields has very strong connections with the sums of squares that we have seen at the
beginning of Section 3.2. For example, an alternative (but equivalent) statement of (4.3)
is that a field is formally real if and only if the element−1 is not a sum of squares.

In many senses, real algebraic geometry still lacks the full maturity of its counter-
part, the algebraically closed case (such asC). Fortunately, many important results are
available: crucial to our developments will be the Real Nullstellensatz, also known as
Positivstellensatz [Ste74,BCR98].

Before proceeding further, we need to introduce a few concepts. Given a set of
polynomialspi ∈ R[x1, . . . , xn], let M(pi) be themultiplicative monoidgenerated by
thepi, i.e., the set of finite products of the elementspi (including the empty product,
the identity). The following definition introduces the ring-theoretic concept ofcone.

Definition 4.5. A coneP of R[x1, . . . , xn] is a subset ofR[x1, . . . , xn] satisfying the
following properties:

1. a, b ∈ P ⇒ a + b ∈ P
2. a, b ∈ P ⇒ a · b ∈ P
3. a ∈ R[x1, . . . , xn] ⇒ a2 ∈ P

Given a setS ⊆ R[x1, . . . , xn], let P (S) be the smallest cone ofR[x1, . . . , xn]
that containsS. It is easy to see thatP (∅) corresponds to the polynomials that can be
expressed as a sum of squares, and is the smallest cone inR[x1, . . . , xn]. For a finite set
S = {a1, . . . , am} ⊆ R[x1, . . . , xn], its associated cone can be expressed as:

P (S) = {p +
r∑

i=1

qibi | p, q1, . . . , qr ∈ P (∅), b1, . . . , br ∈ M(ai)}.
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The Positivstellensatz, due to Stengle [Ste74], is a central theorem inreal algebraic
geometry. It is a common generalization of linear programming duality (for linear in-
equalities) and Hilbert’s Nullstellensatz (for an algebraically closed field). It states that,
for a system of polynomial equations and inequalities, either there exists a solution in
Rn, or there exists a certain polynomial identity which bearswitnessto the fact that no
solution exists. For concreteness it is stated here forR, instead of the general case of
real closed fields.

Theorem 4.6 ([BCR98, Theorem 4.4.2]).Let (fj)j=1,...,s, (gk)k=1,...,t, (h`)`=1,...,u

be finite families of polynomials inR[x1, . . . , xn]. Denote byP the cone generated by
(fj)j=1,...,s, M the multiplicative monoid generated by(gk)k=1,...,t, and I the ideal
generated by(h`)`=1,...,u. Then, the following properties are equivalent:

1. The set 

x ∈ Rn

∣∣∣∣∣∣

fj(x) ≥ 0, j = 1, . . . , s
gk(x) 6= 0, k = 1, . . . , t
h`(x) = 0, j = 1, . . . , u



 (4.4)

is empty.
2. There existf ∈ P, g ∈ M, h ∈ I such thatf + g2 + h = 0.

Proof. We show only the sufficiency part, i.e., 2⇒ 1. We refer the reader to [BCR98]
for the other direction.

Assume that the set is not empty, and consider any elementx0 from it. In this case,
it follows from the definitions that:

f(x0) ≥ 0, g2(x0) > 0, h(x0) = 0

This implies thatf(x0) + g2(x0) + h(x0) > 0, in contradiction with the assumption
thatf + g2 + h = 0. ut

The Positivstellensatz guarantees the existence ofinfeasibility certificatesor refu-
tations, given by the polynomialsf, g andh. For complexity reasons these certificates
cannot be polynomial time checkable for every possible instance, unless NP=co-NP.
While effective bounds on the degrees do exist, their expressions are at least triply ex-
ponential.

Example 4.7.To illustrate the differences between the real and the complex case, and
the use of the Positivstellensatz, consider the very simple case of the standard quadratic
equation

x2 + ax + b = 0.

By the fundamental theorem of algebra (or in this case, just the explicit formula for
the solutions), the equation always has solutions onC. For the case whenx ∈ R, the
solution set will be empty if and only if the discriminantD satisfies

D := b− a2

4
> 0.
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In this case, taking

f := [ 1√
D

(x + a
2 )]2

g := 1
h := − 1

D (x2 + ax + b),

the identityf + g2 + h = 0 is satisfied.

5. Finding refutations using SDP

Theorem 4.6 provides the basis for a hierarchy of sufficient conditions to verify that a
given semialgebraic set is empty. Notice that it is possible to affinely parameterize a
family of candidatef andh, since from Section 3.2, the sum of squares condition can
be expressed as an SDP. Restricting the degree of the possible multipliers, we obtain
semidefinite programs, that can be efficiently solved.

Our main result provides therefore a constructive approach to solutions of the Posi-
tivstellensatz equations:

Theorem 5.1 ([Par00b]).Consider a system of polynomial equalities and inequalities
of the form (4.4). Then, the search for bounded degree Positivstellensatz refutations
can be done using semidefinite programming. If the degree bound is chosen to be large
enough, then the SDPs will be feasible, and the certificates obtained from its solution.

It is convenient to contrast this result with the Nullstellensatz analogue, where the
search for bounded-degree certificates could be done using just linear algebra.

Proof. Given a degreed, chooseg in the following way: ift = 0, i.e., the set of inequa-
tions is empty, theng = 1. Otherwise, letg =

∏t
i=1 g2m

i , choosingm such that the
degree ofg is greater than or equal tod. For the cone of inequalities, choose a degree
d2 ≥ d, d2 ≥ deg(g). Write

f = p0 + p1f1 + · · ·+ psfs + p12f1f2 + · · ·+ p12...sf1 . . . fs

and give a parameterization of the polynomialspi of degree less than or equal tod2.
Similarly, for the polynomialh in the ideal of equations, write

h = q1h1 + · · ·+ quhu,

parameterizing the polynomialsqi of degree less than or equal tod2.
Consider now the SDP feasibility problem:

pi are sums of squares,

with the equality constraints implied by the equationf + g2 + h = 0, the decision
variables being the coefficients of thepi, qi.

If the set defined by (4.4) is empty, then by the Positivstellensatz, polynomial cer-
tificatesf?, g?, h? do exist. By construction of the SDP problem above, there exists a
finite numberd0, such that for everyd ≥ d0 the semidefinite program is feasible, since
there exists at least one feasible point, namelyf?, g?, h?. Therefore, a set of infeasibil-
ity certificates of the polynomial system can directly be obtained from a feasible point
of the SDP. ut
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Remark 5.2.The procedure as just described contains some considerable overparametriza-
tion of the polynomials, due to the generality of the statement and the need to deal with
special cases. In general, once the problem structure is known (for instance, no in-
equations), much more compact formulations can be given, as in the case of quadratic
programming presented in Section 7.4.

The presented formulation deals only with the case of proving that semialgebraic
sets are empty. Nevertheless, it can be easily applied to more general problems, such
as checking nonnegativity of a polynomial over a semialgebraic set. We describe two
simple cases, more being presented in Section 7.

Example 5.3.Consider the problem of verifying if the implication

a(x) = 0 ⇒ b(x) ≥ 0 (5.1)

holds. The implication is true if and only if the set

{x | − b(x) ≥ 0, b(x) 6= 0, a(x) = 0}

is empty. By the Positivstellensatz, this holds iff there exist polynomialss1, s2, t and an
integerk such that:

s1 − s2b + b2k + ta = 0,

ands1 ands2 are sums of squares. A special case, easy to verify, is obtained by taking
s1(x) = 0, k = 1, andt(x) = b(x)r(x), in which case the expression above reduces to
the condition:

b(x) + r(x)a(x) is a sum of squares, (5.2)

which clearly implies that (5.1) holds. Since this expression is affine inr(x), the search
for such anr(x) can be posed as a semidefinite program.

Example 5.4.Let f(x) be a polynomial function, to be minimized over a semialgebraic
setS. Then,γ is a lower bound ofinfx∈S f(x) if and only if the semialgebraic set
{x ∈ S, f(x) < γ} is empty. For fixedγ, we can search for certificates using SDP. It
is also possible, at the expense of fixing some of the variables, to search for the best
possibleγ for the given degree.

In the case of basiccompactsemialgebraic sets, i.e., compact sets of the form
K = {x ∈ Rn, f1(x) ≥ 0, . . . , fs(x) ≥ 0}, a stronger version of the Positivstellensatz,
due to Schm̈udgen [Sch91] can be applied. It says that a polynomialf(x) that is strictly
positive onK, actually belongs to the cone generated by thefi. The Positivstellensatz
presented in Theorem 4.6 only guarantees in this case the existence ofg, h in the cone
such thatfg = 1+h. An important computational drawback of the Schmüdgen formu-
lation is that, due to the cancellations that must occur, the degrees of the infeasibility
certificates can be significantly larger than in the standard Positivstellensatz [Ste96].
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5.1. Interpretation and related work

The main idea of Positivstellensatz refutations can be easily summarized. If the con-
straintshi(x0) = 0 are satisfied, we can then generate by multiplication and addition
a whole class of expressions, namely those in the corresponding ideal, that should also
vanish atx0. For the inequation case (gi 6= 0), multiplication of the constraintsgi pro-
vides new functions that are guaranteed not to have a zero atx0. For the constraints
fi ≥ 0, newvalid inequalities, nonnegative atx0, are derived by multiplication with
other constraints and nonnegative functions (actually, sums of squares). By simultane-
ously searching over all these possibilities, and combining the results, we can obtain
a proof of the infeasibility of the original system. These operations are simultaneously
carried over by the optimization procedure.

It is interesting to compare this approach with the standard duality bounds in convex
programming. In that case,linear combinations of constraints (basically, linear func-
tionals) are used to derive important information about the feasible set. The Positivstel-
lensatz formulation instead achieves improved results by combining the constraints in
an arbitrarynonlinear fashion, by allowing multiplication of constraints and products
with nonnegative functions.

There are many interesting links with foundational questions in logic and theoretical
computer science. The Positivstellensatz constitutes a complete algebraic proof system
(see [GV02] and the references therein), so issues about proof length are very relevant.
For many practical problems, very concise (low degree) infeasibility certificates can be
constructed, even though in principle there seems to be no reason to expect so. This is
an issue that clearly deserves much more research.

Related ideas have been explored earlier in “lift-and-project” techniques used to de-
rive valid inequalities in zero-one combinatorial optimization problems, such as those
introduced by Lov́asz-Schrijver [LS91,Lov94] and Sherali-Adams [SA90]. In partic-
ular, the latter authors develop the so-called Reformulation-Linearization technique
(RLT), later extended by Tuncbilek to handle general polynomial problems [SA99,
Chapter 9]. In this procedure, products of explicit upper and lower bounds on the vari-
ables are formed, which are later linearized by the introduction on new variables, re-
sulting in a relaxation that can be formulated as a linear program. Both approaches can
be used to develop tractable approximations to the convex hull of zero-one points in a
given convex set. A typical application is the case of integer linear or polynomial pro-
grams, which are known NP-hard problems. An important property of these approaches
is the exactness of the procedure after ana priori fixed number of liftings.

Some common elements among these procedures are the use of new variables and
constraints, defined as products of the original ones, and associated linear (in RLT) or
semidefinite constraints (in the Lovász-SchrijverN+ relaxation). In the author’s opin-
ion, an important asset of the approach introduced in the current paper as opposed to
earlier work is that it focuses on the algebraic-geometric structure of the solution set
itself, rather than on that of the describing equations. Additionally, and similar to the
results mentioned above, it can be shown using simple algebraic properties thata pri-
ori bounded finite termination always holds for the case of zero-dimensional ideals
[Par02a].
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The recent independent work of Lasserre [Las01] has several common elements
with the one presented here, while focusing more closely on polynomial optimization
and the dual viewpoint of truncated moment sequences. Using additional compactness
assumptions, and invoking results on linear representations of strictly positive polyno-
mials over semialgebraic sets, a sequence of SDPs for approximating global minima is
proposed. In the framework of the present paper, it can be shown that Lasserre’s ap-
proach corresponds to a very specific kind of affine Positivstellensatz certificates. This
restriction, while somewhat attractive from a theoretical viewpoint, in some cases can
produce significantly weaker computational bounds than using the full power of the
Positivstellensatz [Ste96], an issue explored in more detail elsewhere [Par02b]. An ad-
vantage of the techniques presented here is that exact convergence isalwaysachieved in
a finite number of steps (regardless of compactness, or any other assumption), while the
results in [Las01] can only produce a monotone sequence of bounds, converging to the
optimal. It should be mentioned that Laurent [Lau] has recently analyzed in detail the
relationship of the Lasserre approach in the 0-1 case with the earlier relaxation schemes
mentioned above.

The bottom line is thatall the procedures mentioned above can be understood as
particular cases of Positivstellensatz refutations, where either restrictions in the verifi-
cation (linear programming in RLT) or structural constraints on the certificates them-
selves (linearity, in Lasserre’s approach) are imposeda priori. In a very concrete sense,
reinforced by the connections with proof systems alluded to above, the Positivstellen-
satz represents the most general deductive system for which inferences from the given
equations can be made, and for which proofs can be efficiently search over and found.

6. Computational considerations

6.1. Implementation

In this section, we briefly discuss some aspects of the computational implementation of
the sum of squares decision procedure. As we have seen in Section 3, for semidefinite
programs, just like in the linear programming case, there are two formulations: primal
and dual. In principle, it is possible to pose the sum of squares problem as either of
them, with the end results being mathematically equivalent. However, for reasons to
be described next, one formulation may be numerically more efficient than the other,
depending on the dimension of the problem.

As mentioned in Section 3, a semidefinite program can be interpreted as an opti-
mization problem over the intersection of an affine subspaceL and the coneSn

+. De-
pending on the dimension ofL, it may be computationally advantageous to describe
the subspace using either a set of generators (an explicit, orimagerepresentation) or
the defining linear equations (the implicit, orkernelrepresentation).

When the dimension ofL is small relative to the ambient space, then an efficient
representation will be given by a set of generators (or a basis), i.e.,

X = G0 +
∑

i

λiGi.
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2d \ n 1 3 5 7 9 11 13 15
2 2 4 6 8 10 12 14 16
4 3 10 21 36 55 78 105 136
6 4 20 56 120 220 364 560 816
8 5 35 126 330 715 1365 2380 3876
10 6 56 252 792 2002 4368 8568 15504
12 7 84 462 1716 5005 12376 27132 54264

Table 6.1.Dimension of the matrixQ as a function of the number of variablesn and the degree2d. The
corresponding expression is

(n+d
d

)
.

On the other hand, ifL is nearly full dimensional, then a more concise description is
given instead by the set of linear relations satisfied by the elements ofL, that is,

〈X, Ai〉 = bi.

While the resulting problems are formally the same, there are usually significant differ-
ences in the associated computation times.

Consider the problem of checking if a dense polynomial of total degree2d in n
variables is a sum of squares, using the techniques described earlier. The number of
coefficients is, as we have seen, equal to

(
n+2d

2d

)
. The dimension of the corresponding

matrixQ is
(
n+d

d

)
(see Table 6.1).

If we use an explicit representation the total number of additional variables we need
to introduce can be easily be shown to be:

N1 =
1
2

[(
n + d

d

)2

+
(

n + d

d

)]
−

(
n + 2d

2d

)
.

On the other hand, in the implicit formulation the number of equality constraints (i.e.,
the number of matricesAi in (3.1)) is exactly equal to the number of coefficients, i.e.

N2 =
(

n + 2d

2d

)
.

Example 6.1.We revisit Example 3.5, where an implicit (or kernel) representation of the
one dimensional subspace of matricesQ was given. An explicit (image) representation
of the same subspace is given by:

Q =




2 −λ 1
−λ 5 0
1 0 2λ− 1


 .

The particular matrix in Example 3.5 corresponds to the choiceλ = 3. Notice that
the free variableλ corresponds to the algebraic dependency among the entries ofz:
(x2)(y2) = (xy)2.

For fixedd, both quantitiesN1, N2 areO(n2d); however, the corresponding constants
can be vastly different. In fact, the following expressions hold:

N1 ≈
(

1
2(d!)2

− 1
(2d)!

)
n2d, N2 ≈

(
1

(2d)!

)
n2d.
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For large values ofd, the second expression is much smaller than the first one, making
the implicit formulation preferable. For small values ofn andd, however, the situation
is not clear-cut, and the explicit one can be a better choice.

We consider next three representative examples:

1. The case of a quartic univariate polynomial (n = 1, 2d = 4). Notice that this
is equivalent, by dehomogenization, to the quartic bivariate form in Examples 3.5
and 6.1. The resulting matrixQ has dimensions3× 3, and the number of variables
for the explicit and implicit formulation areN1 = 1 andN2 = 5, respectively.

2. A trivariate polynomial of degree 10 (n = 3, 2d = 10). The corresponding matrix
has dimensions56× 56, and the number of variables isN1 = 1310 andN2 = 286.
The advantages of the second approach are clear.

3. A quartic polynomial in 15 variables (n = 15, 2d = 4). The corresponding matrix
has dimensions136 × 136, and the number of variables isN1 = 5440 andN2 =
3876.

A minor inconvenience of the implicit formulation appears when the optimization prob-
lem includes additional variables, for which no a priori bounds are known. Most current
SDP implementations do not easily allow for an efficient mixed primal-dual formula-
tion, where some variables are constrained to be in the PSD cone and others are free.
This is a well-known issue already solved in the linear programming setting, where
current software allows for the efficient simultaneous handling of both nonnegative and
unconstrained variables.

6.2. Exploiting structure

If the polynomials are sparse, in the sense that only a few of the monomials are nonzero,
then it is usually possible to considerably simplify the resulting SDPs. To do this, we can
use a result by Reznick, first formulated in [Rez78], that characterizes the monomials
that can appear in a sum of squares representation, in terms of the Newton polytope of
the input polynomial.

Another property that can be fully exploited for algorithmic efficiency is the pres-
ence of symmetries. If the problem data is invariant under the action of a symmetry
group, then the computational burden of solving the optimization problem can be sub-
stantially reduced. This aspect has strong connections with representation and invariant
theories, and is analyzed in much more detail in [GP01].

In practice, the actual performance will be affected by other elements in addition to
the number of variables in the chosen formulation. In particular, the extent to which the
specific problem-dependent structure can be exploited is usually the determining factor
in the application of optimization methods to medium or large-scale problems.

7. Applications

In this section we outline some specific application areas to which the developed tech-
niques have shown a great potential, when compared to traditional tools. The descrip-
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tions are necessarily brief, with more detailed treatments appearing elsewhere. Compu-
tational implementations for most of these examples are provided with the freely avail-
able SeDuMi-based SOSTOOLS software package [PPP02], that fully implements the
approach developed in this paper. Needless to say, the generality of the semialgebraic
problem formulation makes possible the use of the presented methods in numerous
other areas.

7.1. Global bounds for polynomial functions

It is possible to apply the technique to compute global lower bounds for polynomial
functions [Sho87,Sho98,Las01]. For an in-depth analysis of this particular problem,
including numerous examples and a comparison with traditional algebraic techniques,
we refer the reader to [PS01].

The condition
F (x)− γ is a sum of squares

is affine inγ, and therefore it is possible to efficiently compute the maximum value ofγ
for which this property holds. For every feasibleγ, F (x) ≥ γ for all x, soγ is a lower
bound on the global minimum. In many cases, as in the Example below, the resulting
bound is optimal, i.e., equal to the global minimum, and a pointx? achieving the global
minimum can be recovered from a factorization of the dual solution.

Example 7.1.Consider the function

F (x, y) = 4x2 − 21
10

x4 +
1
3
x6 + xy − 4y2 + 4y4,

cited in [Mun99, p. 333] as a test example for global minimization algorithms, since it
has several local extrema. Using the techniques described earlier, it is possible to find
the largestγ such thatF (x)− γ is a sum of squares.

Doing so, we findγ∗ ≈ −1.03162845. This turns out to be the exact global mini-
mum, since that value is achieved forx ≈ 0.089842, y ≈ −0.7126564.

However, for the reasons mentioned earlier in Section 3.2, it is possible to obtain a
lower bound that is strictly less than the global minimum, or even no useful bound at
all.

Example 7.2.As examples of a problem with nonzero gaps, we compute global lower
bounds of dehomogenizations of the Motzkin polynomialM(x, y, z) presented in (3.4).
SinceM(x, y, z) is nonnegative, its dehomogenizations also have the same property.
Furthermore, sinceM(1, 1, 1) = 0, they always achieve its minimum possible value.

Fixing the variabley, we obtain

F (x, z) := M(x, 1, z) = x4 + x2 + z6 − 3x2z2.

To obtain a lower bound, we search for the maximumγ for whichF (x, z)− γ is a sum
of squares.
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Solving the corresponding SDPs, the best lower bound that can be obtained this way
can be shown to be− 729

4096 ≈ −0.177978, and follows from the decomposition:

F (x, z) + 729
4096 = (− 9

8z + z3)2 + ( 27
64 + x2 − 3

2z2)2 + 5
32x2

The gap can also be infinite, for some particular problems. Consider the dehomog-
enization inz:

G(x, y) := M(x, y, 1) = x4y2 + x2y4 + 1− 3x2y2.

While G(x, y) ≥ 0, it can be shown thatG(x, y) − γ is not a sum of squares forany
value ofγ, and therefore no useful information can be obtained in this case. This can be
fixed (using the Positivstellensatz, or the approach in Example 7.3 below) at the expense
of more computation.

As we have seen, the method can sometimes produce suboptimal bounds. This is to
be expected, for computational complexity reasons and because the class of nonnegative
polynomials is not equal to the SOS ones. It is not clear yet how important this is
in practical applications: for example, for the class of random instances analyzed in
[PS01],no examplewas produced on which the obtained bound does not coincide with
the optimal value. In other words, even though bad examples do indeed exist, they seem
to be “rare,” at least for some particular ensembles.

In any case, there exist possible workarounds, at a higher computational cost. For a
nonnegativeF (x), Artin’s positive answer to Hilbert’s 17th problem assures the exis-
tence of a polynomialG(x), such thatF (x)G2(x) can be written as a sum of squares.
In particular, Reznick’s results [Rez95] show that ifF is positive definiteit is always
possible to takeG(x) = (

∑
x2

i )
r, for sufficiently larger.

Example 7.3.Consider the case of the Motzkin form given in equation (3.4). As men-
tioned earlier, it cannot be written as a sum of squares of polynomials. Even though it
is only semidefinite (so in principle we cannot apply Reznick’s theorem), after solving
the SDPs we obtain the decomposition:

(x2 + y2 + z2) M(x, y, z) = (x2yz − yz3)2 + (xy2z − xz3)2 + (x2y2 − z4)2 +

+
1
4
(xy3 − x3y)2 +

3
4
(xy3 + x3y − 2xyz2)2,

from where nonnegativity is obvious. Since the polynomials in Example 7.2 are deho-
mogenizations ofM(x, y, z), it follows that this method yields exact solutions for those
examples.

To give a rough idea of the large scale problems to which we have applied the tech-
niques in [PS01], we mention that the SOS lower bound for a dense quartic polynomial
in thirteen variables (i.e., with 2380 monomials) can be solved on a standard desktop
machine, using off-the-shelf software, in approximately 30 minutes.
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Fig. 7.1.The curveC(x, y) = 0 and the minimum distance circle.

7.2. Geometric problems

Many problems in computational geometry can be fully described using a semialgebraic
formulation. Properties such as intersection of geometric objects easily reduce to the
real feasibility of sets of polynomial equations. In the following very simple example,
we use the Positivstellensatz to compute a lower bound on the distance between a point
and an algebraic curve.

Example 7.4.In this problem, we compute a lower bound on the distance between a
given point(x0, y0) and an algebraic curveC(x, y) = 0. Take(x0, y0) = (1, 1), and
let the algebraic curve be

C(x, y) := x3 − 8x− 2y = 0.

In this case, we can formulate the optimization problem

min
C(x,y)=0

(x− x0)2 + (y − y0)2 (7.1)

A lower bound on the optimal value can be obtained as described earlier. Restricting the
degree of the auxiliary polynomials to a simple linear expression inx, we can compute
the maximum value ofγ2 that satisfies

(x− 1)2 + (y − 1)2 − γ2 + (α + βx)(x3 − 8x− 2y) is a sum of squares. (7.2)

It should be clear that if condition (7.2) holds, then every pair of points(x, y) in the
curve are at a distance at least equal toγ from (x0, y0). To see this, note that if the point
(x, y) is in the curveC(x, y) = 0, then the last term in (7.2) vanishes, and therefore
(x− 1)2 + (y − 1)2 ≥ γ. The expression is affine inα, β, andγ2, and so the problem
can be directly solved using SDP.
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The optimal solution of the SDPs is:

α ≈ −0.28466411, β ≈ 0.07305057, γ ≈ 1.47221165.

The obtained boundγ is sharp, since it is achieved by the values

x ≈ −0.176299246, y ≈ 0.702457168.

In Figure 7.1 a plot ofC(x) and the optimal solution is presented.
Notice that the original optimization formulation (7.1) isnota convex program, and

has other local extrema. Nevertheless, the procedure always computes a bound, and in
this case we actually recover the global minimum.

7.3. The discriminant of symmetric matrices

The following example illustrates the sum of squares techniques, and deals with the
discriminant of symmetric matrices. It has been previously analyzed in [Ily92,Lax98].
Given a symmetric matrixA ∈ Sn, define its characteristic polynomialp(λ) as:

p(λ) := det(λI −A).

This is a polynomial inλ, of degreen. Its discriminantD (see for instance [Mis93]) is
a homogeneous polynomial of degreen(n − 1) in the

(
n+1

2

)
coefficients ofA. Since

A is symmetric, its eigenvalues (the roots ofp) are real, and therefore the discriminant
D takes only nonnegative values, i.e.,D ≥ 0. The results in [Ily92,Lax98] show that
additionally the polynomialp is always a sum of squares. For instance, whenn = 2,
we have:

A =
[

a b
b c

]
, p(λ) = λ2 + (−a− c)λ + ac− b2, D = 4b2 + a2 + c2 − 2ac,

and the SOS property holds sinceD can be alternatively expressed as

D = (a− c)2 + (2b)2.

An explicit expression for the discriminant as a sum of squares is presented in [Ily92].
An interesting unsolved problem is finding a representation with the minimum possible
number of squares. For the casen = 3, i.e.,

M =




a b d
b c e
d e f


 ,

after solving the SDPs, using as objective function the trace of the matrixQ as a heuris-
tic for the rank, we obtain the following decomposition usingsevensquares:

D = f2
1 + f2

2 + f2
3 + f2

4 + 15(f2
5 + f2

6 + f2
7 )

f1 = e2f + b2c + d2a− cf2 − ac2 − fa2 − ce2 − ab2 − fd2 + c2f + a2c + f2a

f2 = 2d3 − de2 − b2d− 2dc2 + 2dcf − bef + 2bce− 2adf − abe + 2acd
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f3 = 2e3 − eb2 − d2e− 2ea2 + 2eac− dbc + 2dab− 2fec− fdb + 2fae

f4 = 2b3 − bd2 − e2b− 2bf2 + 2bfa− eda + 2efd− 2cba− ced + 2cfb

f5 = be2 − dce− bd2 + ade

f6 = db2 − eab− de2 + feb

f7 = ed2 − bfd− eb2 + cbd.

For the casen = 3, the expressions in [Ily92] produce a decomposition with ten distinct
square terms.

7.4. Quadratic programming

In this section we specialize the results presented earlier to the common case of quadratic
inequalities. Concretely, givenm symmetric matricesA1, . . . , Am ∈ Sn, define the set
A as:

A :=
{
x ∈ Rn| xT Aix ≥ 0, ‖x‖ = 1

}
(7.3)

A well-known sufficient condition for the setA to be empty is given by the existence
of scalarsλi that satisfy the condition:

m∑

i=1

λiAi ¹ −I, λi ≥ 0. (7.4)

The reasoning is very simple: assumeA is not empty, and multiply (7.4) left and right
by anyx ∈ A. In this case, the left-hand side of (7.4) is nonnegative, since all terms are
nonnegative, but the right-hand side is−1. This is a contradiction, soA is empty.

The condition (7.4) is the basis of many results in semidefinite relaxations for
quadratic programming problems, such as the one underlying the Goemans-Williamson
MAX-CUT algorithm [GW95], and many others. For instance, for MAX-CUT both
the objective and the boolean constraints on the decision variables can be modeled by
quadratic expressions, namely1

2

∑
ij wij(1− xixj) andx2

i − 1 = 0, respectively. Ap-
plying the condition (7.4) above to the homogenized system, we obtain a semidefinite
program exactly equivalent to the standard SDP MAX-CUT relaxation. It is well-known
(and obvious from a complexity standpoint) that this condition can be conservative, in
the sense that only bounds on the optimal value are obtained in the worst case.

In the framework of this paper, a good interpretation of condition (7.4) is as a Pos-
itivstellensatz refutation, with the multipliers restricted to be a constant. By removing
the degree restrictions, more powerful tests can be devised. In the following theorem
[Par00b], the case of quadratic multipliers is stated. The generalizations to higher de-
grees are straightforward, following directly from Theorem 5.1.

Theorem 7.5.Assume there exist solutionsQi ∈ Sn, rij ∈ R to:

m∑

i=1

Qi(x)Ai(x) +
∑

1≤i<j≤m

rijAi(x)Aj(x) < 0, ∀x ∈ Rn/{0}. (7.5)

whereQi(x) := xT Qix, Qi º 0 andrij ≥ 0. Then, the setA is empty.
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Proof. It basically follows from the same arguments as in the Positivstellensatz case:
the existence of a nontrivialx implies a contradiction. ut
Note that the left-hand size of (7.5) is a homogeneous form of degree four. Checking
the full condition as written would be again a hard problem, so we check instead a
sufficient condition: that the left-hand side of (7.5) can be written (except for the sign
change) as a sum of squares. As we have seen in Section 3.2, this can be checked using
semidefinite programming methods.

The new relaxation is always at least as powerful as the standard one: this can be
easily verified, just by takingQi = λiI andrij = 0. Then, if (7.4) is feasible, then
the left hand side of (7.5) is obviously a sum of squares (recall that positive definite
quadratic forms are always sums of squares).

In [Par00b], we have applied the new procedure suggested by Theorem 7.5 to a
few instances of the MAX-CUT problem where the standard relaxation is known to
have gaps, such as then-cycle and the Petersen graph. For these instances, the new
relaxations are exact, i.e., they produce the optimal solution.

7.5. Matrix copositivity

A symmetric matrixM ∈ Rn×n is said to becopositiveif the associated quadratic form
takes only nonnegative values on the nonnegative orthant, i.e., ifxi ≥ 0 ⇒ xT Mx ≥ 0.
As opposed to positive definiteness, which can be efficiently verified, checking if a
given matrix is not copositive is an NP-complete problem [MK87].

There exist in the literature explicit necessary and sufficient conditions for a given
matrix to be copositive. These conditions are usually expressed in terms of principal
minors (see [V̈al86,CPS92] and the references therein). However, the complexity re-
sults mentioned above imply that in the worst case these tests can take an exponential
number of operations (unless P = NP). Thus, the need for efficient sufficient conditions
to guarantee copositivity.

Example 7.6.We briefly describe an application of copositive matrices [QDRT98]. Con-
sider the problem of obtaining a lower bound on the optimal solution of a linearly con-
strained quadratic optimization problem:

f∗ = min
Ax≥0, xT x=1

xT Qx

If there exists a solutionC to the SDP:

Q−AT CA º γI

whereC is a copositive matrix, then it immediately follows thatf∗ ≥ γ. Thus, having
semidefinite programming tests for copositivity allows for enhanced bounds for this
type of problems.

The main difficulty in obtaining conditions for copositivity is dealing with the con-
straints in the variables, since eachxi has to be nonnegative. While we could apply the
general Positivstellensatz construction to this problem, we opt here for a more natural,
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though equivalent, approach. To check copositivity ofM , we can considerxi = z2
i and

study the global nonnegativity of the fourth order form given by:

P (z) := zT Mz =
∑

i,j

mijz
2
i z2

j

wherez = [z2
1 , z2

2 , . . . , z2
n]T . It is easy to verify thatM is copositive if and only if

the formP (z) is positive semidefinite. Therefore, sufficient conditions forP (z) to be
nonnegative will translate into sufficient conditions forM being copositive.

If we use the sum of squares sufficient condition, then this turns out to be equivalent
to the original matrixM being decomposed as the sum of a positive semidefinite and
an elementwise nonnegative matrix, i.e.

M = P + N, P º 0, nij ≥ 0. (7.6)

This is a well-known sufficient condition for copositivity (see for example [Dia62]).
The equivalence between these two tests has also been noticed in [CL77, Lemma 3.5].

The advantage of the approach is that stronger conditions can be derived. By con-
sidering higher order forms, a hierarchy of increasingly powerful tests is obtained. Of
course, the computational requirements increase accordingly.

Take for example the family of2(r + 2)-forms given by

Pr(z) =

(
n∑

i=1

z2
i

)r

P (z).

Then it is easy to see that ifPi is a sum of squares, thenPi+1 is also a sum of squares.
The converse proposition does not necessarily hold, i.e.Pi+1 can be a sum of squares,
while Pi is not. Additionally, ifPr(z) is nonnegative, then so isP (z). So, by testing if
Pr(z) is a sum of squares (which can be done using SDP methods, as described), we
can guarantee the nonnegativity ofP (z), and as a consequence, copositivity ofM .

For concreteness, we will analyze in some detail the caser = 1, i.e., the sixth order
form

P1(z) :=
∑

i,j,k

mijz
2
i z2

j z2
k.

The associated SDP test can be presented in the following theorem:

Theorem 7.7.Consider the SDPs:

M − Λi º 0, i = 1, . . . , n (7.7)

Λi
ii = 0, i = 1, . . . , n

Λi
jj + Λj

ji + Λj
ij = 0, i 6= j

Λi
jk + Λj

ki + Λk
ij ≥ 0, i 6= j 6= k

where then matricesΛi ∈ Sn are symmetric (Λi
jk = Λi

kj). If there exists a feasible
solution, thenP1(z) is nonnegative, and thereforeM is copositive. Furthermore, this
test is at least as powerful as condition (7.6).
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This hierarchy of enhanced conditions for matrix copositivity, together with results
by Powers and Reznick [PR01], has been recently employed by De Klerk and Pasechnik
[dKP02] in the formulation of strengthened bounds for the stability number of a graph.
A very interesting result in that paper is an explicit example of a copositive matrix
M ∈ S12, for which the test corresponding tor = 1 is not conclusive.
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