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Abstract

Our research explores the feasibility of using communication theory, error control
(EC) coding theory specifically, for quantitatively modeling the protein transla-
tion initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12
is modeled as a noisy (errored), encoded signal and the ribosome as a minimum
Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a tem-
plate for generating a set of valid codewords (the codebook). We tested the E. coli
based coding models on 5’ untranslated leader sequences of prokaryotic organisms
of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2,
Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on
the 5’ untranslated leader where the minimum Hamming distance values of trans-
lated mRNA sub-sequences and non-translated genomic sequences differ the most.
These regions correspond to the Shine-Dalgarno domain and the non-random do-
main. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50
yielded results similar to those for E. coli K-12. Contrary to our expectations, the
behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resem-
bled that of the non-translated sequence group.
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1 Introduction

A fundamental challenge for all communication systems, engineered or living,
is the problem of achieving efficient, secure, and error-free communication over
noisy channels. Information theoretic principals have been used to develop ef-
fective coding theory and cryptographic algorithms to successfully transmit
information from a source to a receiver in engineered systems. Living systems
also successfully transmit their biological information through genetic pro-
cesses such as replication, transcription, and translation, where the genome of
an organism is the contents of the transmission.

The study of the information processing capabilities of living systems began
in the 1970s (Roman-Roldan et al., 1996; Sarkar et al., 1978; Fowler, 1979)
and was revived in the later part of the 1980s, due to the increase in ge-
nomic data which spurred a renewed interest in the use of information theory
in the study of genomics. Information measures, such as entropy, have been
used in recognition of DNA patterns, classification of genetic sequences, and
other computational studies of genetic processes (Roman-Roldan et al., 1996;
Palaniappan and Jernigan, 1984; Almagor, 1985; Schneider, 1991b,a; Altschul,
1991; Salamon and Konopka, 1992; Oliver et al., 1993; DeLaVega et al., 1996;
Schneider and Mastronarde, 1996; Strait and Dewey, 1996; Pavesi et al., 1997;
Loewenstern and Yianilos, 1997; Schneider, 1997, 1999). Applying techniques
from Coding Theory, a subfield of Information Theory, is a logical next step
in the study of the information processing mechanisms of genetic systems.

Application of channel coding theory to genetic data dates back to the late
1950s (Hayes, 1998; Golomb, 1962) with the mapping of the genetic code (the
codon to amino acid mapping). Since then coding theoretic methods have been
used for frame determination, motif classification, oligo-nucleotide chip de-
sign, and DNA computing (Arques and Michel, 1997; Stambuk, 1998, 1999a,b;
Loewenstern and Yianilos, 1997; Sengupta and Tompa, 2002; Kari et al., 1999).
In addition to the application of coding theoretic methods to computational
biology problems, researchers, such as Hubert Yockey who performed funda-
mental investigations of error correcting coding properties of genetic systems,
have explored the error control coding properties of genetic sequences and
systems (Yockey, 1992; Liebovitch et al., 1996; May et al., 1999, 2000; Mac-
Donaill, 2002; Rosen and Moore, 2003). P. Bermel, D. Bitzer, M. Vouk, and
E. Eni. (Bermel et al., unpublished) investigated table-based convolutional
code models for Escherichia coli promotors. Based on the information content
of the promoters, Bermel et al. approximated a 1/9 coding rate for the E.
coli promoter and devised a 1/5 binary convolutional code model for the re-
gion. Beyond the work of Bermel et al. and May et al.’s investigation of block
and convolutional code models for translation initiation, there is little known
research into the development of channel coding models for genetic processes.

2



1.1 Towards a Coding Theory View of Genetics

Informational analysis of genetic sequences has provided significant insight
into parallels between the genetic process and information processing systems
used in the field of communication engineering. Of particular interest are the
results from Schneider et al. (Schneider, 1997; Schneider et al., 1986) and
Eigen (Eigen, 1993). Drawing from their work and previous work in protein
annotation and gene identification, we make several key observations that
lead one to hypothesize that similar to engineering, information-processing
systems, the genetic system contains mechanisms to protect an organism from
errors that occur within its genome.

The first observation is mutations or errors are present within the genome of
an organism. Analogous to an error-producing channel used by an engineer-
ing system to transmit information to a receiver, genetic processes such as
replication can introduce errors into the genome of an organism. Mutations
or variations in a genomic sequence can also be caused by external forces and
can be passed down from parent to offspring. Some of these “errors” may be
part of an organism’s survival mechanism.

A second observation is that there exists sets of acceptable information strings
or sequences that are functionally equivalent within a genetic system. For in-
stance, ribosomal binding sites (translation initiation sites) appear to evolve
to functional requirements rather than to genetic sequences that produce the
strongest binding site (Schneider, 1997). Viable mutants, or imperfect se-
quences, have error rates near an error threshold assuring the organism’s evo-
lutionary flexibility (Eigen, 1993). Whether these variations are inherited or
newly developed errors, genetic systems (macro-molecules, like the ribosome,
that interact with nucleic acid sequences) still recognize a set of sequences
that are similar but nonidentical. In a communication system, the decoder
recognizes a set of similar but nonidentical group of information sequences or
codewords. It will even recognize variations of this set, within the code’s error
detecting/correcting threshold. If survival and evolution of an organism ne-
cessitates errors, then, similar to an engineering communication system, there
must exist a genetic error correction mechanism (Battail, 1997).

The error control mechanism employed by an engineering communication sys-
tem is constructed using principles from the field of Coding Theory, specifi-
cally channel (or error-control) coding theory. Error control is accomplished
by introducing redundancy into the original information sequence through
a well-defined encoding algorithm (Sweeney, 1991; Lin and Costello, 1983;
Dholakia, 1994). Similar to an error-control encoded information sequence,
redundancy occurs naturally within RNA and DNA sequences (Lewin, 1995)
in the form of tandem repeats and “extra” genomic information that in the
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past was considered “junk DNA.”

A final observation is that the ribosome maps, or decodes, a fixed length nu-
cleic acid signal (codon) to specific information (amino acid). This parallels
the behavior of a decoder in a communication system. For an (n, k) code,
the decoder takes a n-symbol vector and maps it to k symbols of informa-
tion, where k is less than n. From these observations, we can theorize that
the transmission of genetic information can be viewed as a biological, cellu-
lar communication system that employs some method of coding to recognize
valid information regions and to correct for “transmission” errors. Given that
messenger RNA is viewed as a noisy encoded signal, the principal hypothe-
sis of our work is that it is feasible to use principles of error control coding
theory to interpret and model genetic regulatory processes such as the regula-
tion of translation initiation. In addition to the translation initiation process,
other areas where an error-control coding model would be applicable include
the regulatory processes that govern DNA replication and the transcription of
DNA into mRNA. As in translation, both processes are regulated by regions
on the genome such as promoter and enhancer sequences.

In the following section, we give a brief overview of error-control coding meth-
ods, block coding specifically, and associated decoding methods. Section 3
discusses the relationship between the block coding method and the genetic
process, and presents the methodology for forming a coding based genetic de-
coder. The preliminary results of applying the genetic decoder to E. coli K-12,
S. typhimurium LT2, B. subtilis, and S. aureus Mu50 are presented in Sec-
tion 4 and implications of the models are analyzed and discussed in Section 5.
In the final section of this paper we discuss possible extensions to our research,
based on the results of the block coding model for translation initiation.

2 Theoretical Background

The mathematics of coding is carried out using a set of discrete source symbols
over a mathematical construct known as a finite field (Sweeney, 1991). In
block encoding, a n-symbol encoded block at time i depends on the k-symbol
information block at time i (Dholakia, 1994). Block codes are referred to as
(n, k) codes. A codeword (or correct set of symbols) is the output of the block
encoder for a given input data block (Sweeney, 1991).
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2.1 Systematic Zero Parity Check Encoding

There are several ways to produce codewords from a k-symbol information se-
quence. A systematic code is a code which contains the k information symbols
at the beginning of the codeword. The information symbols are then followed
by n−k parity symbols. Parity symbols are extra symbols added to the infor-
mation sequence pre-transmission. Addition of redundancy via parity symbols
aids in the detection and correction of errors that occur in the transmitted
message. The value of the n− k parity symbols is determined by the selected
encoding method. In binary codes, where each symbol is a bit and can be
represented as a 0 or 1, each of the final n−k bits are set such that the parity
bit is a linear combination of the information bits (Sweeney, 1991; Lin and
Costello, 1983; Dholakia, 1994). The code is even if the modulo two sum of
the information and parity bits is zero. The coding is odd otherwise.

A codeword is generated for every possible k-symbol information sequence.
The codebook is the set of all codewords generated by the encoder. If a trans-
mitted n-symbol sequence does not map to a codeword, we assume one or
more symbols have been corrupted. The decoding task is to find the most
likely changes in the received n-symbol sequence that will result in a valid
codeword.

2.2 Minimum Distance Decoding

A decoder provides a strategy for selecting the transmitted codeword for a
given received sequence. There are various decoding methods. One method,
maximum likelihood decoding, compares the received sequence with every pos-
sible codeword sequence in the codebook and selects the most likely sequence.
Decoding involves two steps. First the decoder checks whether the sequence
corresponds to a codeword. A distance metric is used to determine how close
the received sequence is to the codewords in the codebook. Second, if the de-
coder is an error correcting decoder, then it must identify the error pattern
and use the error pattern to correct the received sequence to the most probable
codeword transmitted. In this paper, we are only concerned with the decoder’s
ability to perform error detection.

The method tested in this work is called minimum distance decoding. The
distance between codewords, d(a, b) is the number of differences between code-
word a and codeword b; this is called the Hamming distance (Sweeney, 1991).
Although the Hamming distance is widely used in coding theory (and used in
this work) there are other distance metrics for codes including the Lee and
Triangular metrics (Duckworth, 1998). Use of the Lee or Triangular distance
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measures should produce average results similar to those generated using the
Hamming distance. Since the Lee and Triangular metrics define distance in a
non-binary (match or non-match) sense, we suspect that the base five map-
ping of the RNA sequences will have a greater impact on Lee or Triangular
metric-based decoding results than the current Hamming metric-based model.

For a received sequence r, the minimum Hamming distance, dmin of r is the
minimum of d(r, Sc), where Sc is the codebook. In minimum distance decoding,
we decode r to the codeword for which d(r, Sc) is the least. If the minimum
distance computation results in the same distance value for more than one
codeword, although an error is detected, it is not correctable because of the
degeneracy of the mapping. Minimizing the distance is the optimum decoding
approach for a channel in which symbol errors are independent (memoryless
channel) (Sweeney, 1991). The systematic-zero parity encoding concept and
the minimum distance decoding concept are employed in our block coding
model for the translation initiation system.

3 Methods

One does not know the exact mechanism employed by the genetic system to in-
troduce redundancy or encode genetic information. By analyzing key elements
involved in protein translation initiation, we hope to gain insight into a possi-
ble encoding and corresponding decoding model that quantitatively describes
the behavior of the ribosome during translation initiation in prokaryotic organ-
isms. The key biological elements considered in forming the coding model are:
the 3’ end of the 16S ribosomal RNA, the common features of bacterial ribo-
somal binding sites (such as the existence and location of the Shine-Dalgarno
sequence), and RNA/DNA base-pairing principles.

3.1 Messenger RNA as a Block Encoded Sequence

If it is assumed that genetic information in DNA is encoded in a manner equiv-
alent to block encoding, then the received message, the mRNA, can be viewed
as a received parity sequence of a block encoded data stream. The RNA bases
must be mapped to a numeric representation. The genetic coding alphabet
must correspond to a finite field. In binary codes, the finite field consists of 0
and 1, modulo two addition and multiplication. For the genomic code, we know
that four bases are found in mRNA: adenine, guanine, cytosine, and uracil. A
fifth base, inosine, is found in transfer RNA (tRNA) which participates mainly
in the elongation phase of translation. During elongation, inosine can wobble
pair with more than one of the mRNA bases. These biological characteristics
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are used to define an alphabet on the field of five. The RNA bases are mapped
to the field of five as follows: Inosine(I) = 0, Adenine(A) = 1, Guanine(G)
= 2, Cytosine(C) = 3, and Uracil(U) = 4. Multiplication and addition are
modulo five operations (Bitzer et al., 1992). The RNA bases are mapped such
that in modulo five addition the sum of bases that form hydrogen pairs is
zero (as a simplification, we ignore all other chemical bonds that influence
translation initiation). These definitions are used to construct the block code
model for the the translation initiation process. Although multiplication is not
used for the current block code model, it is used in our work on table-based
convolutional code models for translation initiation (May, 2002; May et al.,
2002).

3.2 The Genetic Codebook for Translation Initiation

In evaluating mRNA as a block encoded sequence, an (n,k) systematic zero
parity code was developed based on the 16S ribosomal RNA. The reasoning
behind the developed code is as follows. The 3’ end of the 16S rRNA is di-
rectly involved in binding the messenger RNA during the initiation phase of
protein translation (Lewin, 1995). We use the last thirteen bases of the 16S
rRNA in forming our codewords. The last thirteen bases are used since the
hexamer complementary to the Shine-Dalgarno sequence is found in this re-
gion of the 16S rRNA. The Shine-Dalgarno sequence is a series of nucleic acid
bases on the 5’ untranslated region of prokaryotic mRNA. The Shine-Dalgarno
sequence helps attract the ribosome to the initiation site by forming Watson-
Crick bonds with the 16S ribosomal RNA, part of the 30S ribosomal subunit
(Watson et al., 1987; Lewin, 1995). Specifically, the last thirteen bases of the
16S rRNA that interact with the Shine-Dalgarno domain and other sequences
on the 5’ untranslated mRNA leader, are (Lewin, 1995):

3′AUUCCUCCACUAG...5′ (1)

Since our received sequence, the mRNA, contains the nucleotide sequence
which base pairs with the 16S rRNA, we use the Watson-Crick complement
of the thirteen base sequence in forming our codewords. The complement of
the 3’ end of the 16S rRNA is:

5′UAAGGAGGUGAUC...3′ (2)

We select our n − k parity symbols from all (n-k)-base sub-sequences of the
thirteen base complement in Equation 2. For instance, if we desire a (5,2)
code, we would select our parity symbols from all three-base nucleotide sub-
sequences of the thirteen base 16S complement. Table 1 shows these sub-
sequences and their summation values. The three base parity sub-sequences
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Table 1
Three-base Parity Bits derived from 16s rRNA.

Parity Bases Sum of Parity Bases

U A A 1

A A G 4

A G G 0

G G A 0

G A G 0

G G U 3

G U G 3

U G A 2

G A U 2

A U C 3

are selected so that the following equation is satisfied:

k
∑

1

ugenetic +
n−k
∑

1

ParityBases = 0 (3)

where ugenetic is the k-base information vector and ParityBases is the n − k

base parity vector. To illustrate, if we define the information sequence as:
ugenetic = (C A). The numerical representation is u = (3 1). We select a
set of parity symbols from Table 1 such that u1 + u2 +

∑3
1 ParityBases = 0.

Hence (U A A) is selected as our parity bases. The resulting codeword is:
Codeword = (3 1 4 1 1). The equivalent genetic codeword is: Codewordgenetic =
(C A U A A). We generate codewords for all possible k-base genetic in-
formation vectors. For a (5,2) code our information vectors would be drawn
from every possible two-base RNA sequence; there are sixteen such sequences.
A codeword is produced, as previously illustrated, for each possible two-base
RNA sequence. If the resulting codeword satisfies Equation 3, then it is in-
cluded in the codeword list (the codebook) otherwise it is excluded.

3.2.1 Multiple Codewords

In the preceding example, parity base selection is straightforward. Since (U A
A) is the only three-base parity set that sums to one, it is the only choice. But,
consider the next example: ugenetic = (G A). The numerical representation
is u = (2 1). The sum of the parity bases needs to be two in order to achieve
a zero parity codeword. From Table 1 we can choose either (U G A) or (G A
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U). Therefore, there are two possible codewords: Codeword1 = (2 1 4 2 1)
or Codeword2 = (2 1 2 1 4). The equivalent genetic codewords are:
Codeword1

genetic = (G A U G A) and Codeword2
genetic = (G A G A U).

Since there are two codewords, we must decide which codeword to select. In
order to make this decision, let us consider the protein translation model.

Several factors influence translation of mRNA sequences, including: initiation
codon, presence and location of the Shine-Dalgarno sequence, spacing between
the initiation codon and the Shine-Dalgarno domain, the second codon fol-
lowing the initiator codon, and possibly other nucleotides in the -20 to +13
region (including the non-random domain) of the mRNA leader region (Gold
and Stormo, 1987). The exact bases of the 3’ end of the 16S rRNA to which
the mRNA leader region binds are not always fixed. What is known is that
during translation initiation, the last thirteen bases of the 16S rRNA bind to
the mRNA leader sequence in a region known as the ribosome binding site
(Lewin, 1995; Watson et al., 1987). Several bases on the exposed part of the
16S rRNA are candidates for binding with the mRNA. To model this biologi-
cal possibility, we include both codewords, (G A U G A) and (G A G A U),
in our list of valid codewords.

3.3 Minimum Distance Decoder for Model Verification

A minimum Hamming distance decoder, based on the systematic, zero-parity
check encoding methodology, was designed to verify the block coding model.
The analysis sequence is composed of: the thirty bases of the mRNA leader
sequence preceding the initiation (start) signal, the initiation signal (usually
AUG), and twenty-seven bases from the coding region immediately following
the initiation signal:

[b−30 b−29 ... b−1 A U G b+3 ... b+29] (4)

Bases numbered -30 to -1 are part of the leader region of the mRNA. Bases
numbered +3 to +29 are part of the coding region of the mRNA. The A
of the AUG initiation signal is position zero in the sequence. The analysis
sequence is the portion of the mRNA that we evaluate in order to determine
any significant differences between the coding characteristics of translated and
non-translated mRNA sequences. The ribosome covers approximately thirty
bases of the mRNA at a time (Lewin, 1995). Therefore, a sixty base analysis
sequence should be sufficient in representing the region of the mRNA that
interacts with the small subunit of the ribosome during the initiation process.
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The received sequence is an n-base subset of the analysis sequence. For in-
stance, assuming a (5,2) code, the first two received sequences would be:

r−30 = [b−30 b−29 b−28 b−27 b−26] (5)

r−29 = [b−29 b−28 b−27 b−26 b−25] (6)

The received sequence is referenced with respect to its positional distance
from the first base of the start signal. The minimum Hamming distance of a
received sequence is defined as:

dminp = min[d(rp, Sc)] (7)

where p is position relative to the initiation codon and S(c represents the
codebook, the set of all codewords in our codeword list.

The decoding process normally corrects the received sequence to the code-
word with the lowest minimum distance value and recovers the transmitted
information sequence, u. Since our objective is to analyze the coding model,
the minimum distance is recorded for each received sequence in the analysis
stream. This distance is used to evaluate how well the block coding model cap-
tures the biological aspects of the initiation process. The E. coli K-12 strain
MG1655 sequence data was used to test a (5,2) and (8,2) block code model
for prokaryotic translation initiation.

4 Results

The complete E. coli K-12 genome file, ecoli.gbk, was downloaded from the
NIH ftp site (ncbi.nlm.nih.gov). Using a PERL script program, the following
information was extracted from the GenBank files: 1) Complete DNA sequence
of E. coli K-12 strain MG1655, accession number U000096; 2)Location of
each known gene in the coding strand; 3)Location of each known gene in the
complement strand. Using the information in the GenBank file, we separated
known and possible reading frames into three data groups:

Translated Sequences (2,917 sequences): Open reading frames which Gen-
Bank indicates as sequences that translate into protein.

Hypothetical Sequences (1,372 sequences): Open reading frames which
GenBank indicates as hypothetically translated sequences. According to
the GenBank documentation, GeneMark software was used to predict open
reading frames.
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Non-Translated Sequences (21,039 sequences): Open reading frames which
do not appear on the list of translating or hypothetically translating se-
quences in the GenBank genome file. For this work, the open reading frame
had to have: 1)A valid initiation codon; 2)A valid termination codon; 3)A
sequence length greater than or equal to ninety-nine bases.

The GenBank sequence is the DNA sequence of the E. coli K-12. The prokary-
otic mRNA transcript does not undergo modification, unlike eukaryotic mR-
NAs, prior to translation by the ribosome. Therefore we can use the DNA
sequence of the E.coli as our mRNA sequence. In our experiment, uracil (U)
replaces thymine (T) in the GenBank sequences since uracil appears in RNA.

4.1 Analysis Method

The block decoder stores the minimum distance information for each sequence
group in matrices of the form:















dmin1
−30 dmin1

−29 ... dmin1
PosV alid

: : : :

dmin
nseq
−30 dmin

nseq
−29 ... dmin

nseq
PosV alid















(8)

where nseq is the number of analysis sequences in the group and PosV alid is
the last valid comparison (or decoding) position on the sequence. For a (n, k)
code,

PosV alid = InitPos + NumV alid − 1 (9)

and

NumV alid = SeqLength − n + 1 (10)

In this work, InitPos = −30 and SeqLength = 60; therefore NumV alid = 56
for the (5,2) block code model and NumV alid = 53 for the (8,2) model. The
corresponding values for PosV alid are PosV alid = +25 and PosV alid = +22,
respectively.

To extract the information signal from the noise contained in our model, we
take the average dmin value by position for each sequence group. This pro-
duces one signal, dminSequenceGroup, that describes the minimum distance char-
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acteristic of each sequence group, where

dmin(SequenceGroup)(p) =
1

nseq

nseq
∑

i=1

dmini
SequenceGroup(p) (11)

The range for the index p is p = −30..PosV alid, where p represents position
relative to the initiation codon. Averaging is a standard signal processing tech-
nique used to amplify a signal in the presence of noise. Averaging suppresses
the noise in individual sequences and amplifies the common characteristics
among all the sequences in a sequence group. Smaller distance values in the
dminSequenceGroup vector indicate stronger hydrogen bond formations between
the 16S ribosomal RNA and the messenger RNA.

4.2 (5,2) and (8,2) Block Code Model

For the (5,2) code, there were a total of thirty-three codewords. In this model,
for each two base information sequence a three base parity sub-sequence was
selected. Figure 1 shows the resulting mean or average minimum Hamming
distance by position for the (5,2) block code model. The horizontal axis is the

−30 −20 −10 0 10 20 30
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Mean Dmin for (5,2) Systematic BlockCode

Translated=*−

Hypothetical=.−

Non−translated=solid

position

mean dmin

Fig. 1. Results of Minimum Distance Block Decoding Model for (5,2) Code

position relative to the first base of the initiation codon. Zero on the hori-
zontal axis corresponds to the alignment of the first base of a codeword with
the first base of the initiation codon. The vertical axis shows the mean of
the aligned minimum distance values of the sequences in each of the three se-
quence data groups (translated sequences, hypothetical translated sequences,
and non-translated sequences).
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For the (8,2) code, there were a total of twenty-six codewords. For each two
base information sequence a six base parity sub-sequence was selected. Fig-
ure 2 shows the resulting mean minimum Hamming distance by position for
the (8,2) block code model. As in Figure 1 the horizontal axis corresponds

−30 −20 −10 0 10 20 30
2.8

3

3.2

3.4

3.6

3.8

4
Mean Dmin for (8,2) Systematic BlockCode

mean dmin

position

Translated=*−

Hypothetical=.−

Non−translated=solid

Fig. 2. Results of Minimum Distance Block Decoding Model for (8,2) Code

to the position relative to the first base of the start codon, which is position
zero. The vertical axis is the mean of the aligned minimum Hamming distance
values of the leader sequences in each of the three sequence groups.

4.3 Application of Block Code Model to Non-model Prokaryotic Organisms

The block coding models produced using the E. coli K-12 genome were tested
on data sets from three prokaryotic organisms: Salmonella typhimurium LT2,
Bacillus subtilis, and Staphylococcus aureus Mu50. E. coli and S. typhimurium
share a common taxonomical lineage as do B. subtilis and S. aureus. The se-
quence data used for testing the model on prokaryotic organisms were compiled
and processed using the web-based GenBank Information Retrieval Tool devel-
oped by Cheng and Chandra of the North Carolina State University Scientific
Data Management Center (Chandra, 2002).

Figure 3 shows the resulting mean minimum distance by position for the (5,2)
block code model. Figure 4 shows the resulting mean minimum distance by
position for the (8,2) block code model. The horizontal and vertical axes for
Figure 3 and Figure 4 correspond, as in previous figures, to position and
average minimum Hamming distance values, respectively.
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Fig. 3. Results of Minimum Distance Block Decoding Model for (5,2) Code for
Prokaryotic Data Set
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Fig. 4. Results of Minimum Distance Block Decoding Model for (8,2) Code for
Prokaryotic Data Set

5 Discussion

Three criteria were used to analyze the effectiveness of the block code model:
1)Distinction between translated and non-translated sequence groups; 2)Indi-
cation and recognition of the open reading frame construct; 3)Recognition of
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biologically significant regions within the mRNA leader sequence. The results
of the (5,2) and (8,2) block code models show a significant difference between
the translated, hypothetical and the non-translated group. As Figure 1 and
Figure 2 illustrate the -15 to 0 region (-20 to 0 for the (8,2) model) con-
tains large synchronization signals which can be used to distinguish between
translated and non-translated sequence groups (Criteria 1). Although the cur-
rent models do not produce strong evidence of frame synchronization patterns
within the protein coding region, they do indicate a strong synchronization
pattern at the initiation codon (Criteria 2). Both the (5,2) and (8,2) block code
model recognize biologically important regions on the mRNA leader (Criteria
3). A minimum distance trough occurs between the -15 and -10 regions for
both models. These regions contain the non-random domain and the Shine-
Dalgarno domain, key regions in the translation initiation process (Gold and
Stormo, 1987).

5.1 Response of Prokaryotic Organisms to Block Code Model

The behavior of B. subtilis and S. aureus are similar to the behavior of E.
coli. B. subtilis and S. aureus have larger average dmin values than the E.
coli model organism for both the (5,2) and (8,2) models. They differ signif-
icantly from the non-leader (non-translated) sequence groups and recognize
biologically significant regions such as the Shine-Dalgarno domain, the non-
random domain, and the initiation codon. Surprisingly, S. typhimurium, the
most taxonomically related to E. coli, differed significantly from E. coli and
the other prokaryotic organisms. In fact in both the (5,2) and (8,2) models,
S. typhimurium behaves more like the non-leader sequence group, reaching
its global minimum within the protein coding region of the mRNA analysis
sequence. The cause and implication of this difference in behavior continue to
be investigated.

6 Conclusion

Both the (5,2) and (8,2) models distinguish translated sequence groups and
non-translated sequence groups. They both also indicate the existence of key
regions within the mRNA leader sequence. The block code model recognizes
the ribosomal binding site (the location of the Shine-Dalgarno sequence) read-
ily. The model also identifies the non-random domain, the region upstream of
the Shine-Dalgarno domain believed to also affect translation initiation (Gold
and Stormo, 1987). We were able to successfully apply the model to other
prokaryotic organisms, including B. subtilis and S. aureus. The unexpected
response of S. typhimurium to the model raises interesting questions regard-
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ing the genetic, taxonomical relatedness of E. coli and S. typhimurium that
warrant further computational and biological investigation.

The results of our work suggest that it is possible to design a coding based
heuristic for distinguishing between protein coding and non-protein coding
genomic sequences by “decoding” the mRNA leader region. The block code
model used in this work is a sliding block code. We evaluated overlapping
information, hence mimicking a convolutional code. A convolutional code more
accurately depicts the behavior of the ribosome as a decoder that incorporates
memory in its translation (or decoding) decisions. In our current work we
explore this memory based coding model for genetic regulatory processes. We
investigate evolutionary computing and algebraic methods for constructing
coding models of translation initiation sites and for analyzing general EC
coding properties of regulatory sequences.

The success of this work can lead to the development of improved methods for
identifying the precise location of translation initiation start sites, an area that
is receiving greater computational research attention (Frishman et al., 1999;
Tompa, 1999; Hannenhalli et al., 1999; Suzek et al., 2001; Walker et al., 2002;
Zien et al., 2000; Yada et al., 2001; Besemer et al., 2001). Additionally, design
of effective coding-based models for genetic regulatory systems can potentially
help researchers determine how to incorporate deliberate, sequence-controlled
regulation into engineered proteins. Such a tool would be useful for designing
regulatory sequences for transgenic organisms, as well as further our under-
standing of the translation regulatory mechanisms.
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