
How Smart Does an Agent Need to Be? 

Scott Kirkpatrick1 and Johannes J. Schneider1,2

1Hebrew University of Jerusalem, Israel
and

2Johannes Gutenberg University, Mainz, Germany

Abstract

The  classic  distributed  computation  is  done  by  atoms,  molecules,  or  spins  in  vast
numbers,  each  equipped  with  nothing  more  than  knowledge  of  their  immediate
neighborhood and the rules of statistical mechanics. Such agents,  10^23 or more of
them, are able to form liquids and solids from gases, realize extremely complex ordered
states, such as liquid crystals, and even decode encrypted messages. I'll describe a study
done for a sensor-array "challenge problem" in which we have based our approach on
old-fashioned simulated annealing to accomplish target acquisition and tracking under
the rules of statistical mechanics.  We believe the many additional constraints that occur
in the real problem can be folded, step by step, into this stochastic approach. The results
have applicability to other network management problems on scales where a distributed
solution will be mandatory.

Introduction

A very old idea in distributed computing and communication is the network that self-
organizes  to  perform  some  local  function  of  moderate  complexity  and  then
communicates  its  discoveries  to  some  wider  world  that  is  interested.   In  military
communications, this might take the form of sensor arrays of simple, inexpensive units
“sprinkled” behind a rapidly advancing force in battle to provide communications, or
around a sensitive installation to create a defensive perimeter.  We recently participated
in a study of an application of this  sort.   From our experience,  we concluded that
understanding the complexity of these self-organizing systems is critical to achieving
their objectives, and is sorely neglected in the most popular approaches to programming
them.  The study which we joined (in midstream) had been envisioned as an exercise in
multi-agent  distributed programming with negotiation protocols.   These were  to be
employed to resolve a difficult optimization problem, which would frequently require
settling for locally sub-optimal results in order to meet challenging real time constraints
with acceptable solution quality.  

The sensors in this array are Doppler radars, rather useless individually but capable of
tracking targets if three or more of the radars can lock onto a single foreign object for a
sufficient  time. In possible  applications,  such as protecting a aircraft  carrier  during
refueling, one could imagine having a few thousand such antennas floating in the sea.
But for research and demo purposes,  controlling four to twenty  such antennas was
considered quite challenging.  Thus the temptation was strong to write very special-case
agents, and evolve very specific negotiation protocols as overloads and other problems
were discovered.  One of the other groups in this study was planning to develop a target
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selection protocol, with negotiation, that would support 64 antennas observing a dozen
or so targets, and simulate it on a 32-processor server cluster, but not in real time.

Working with Bart Selman and the Intelligent Information Systems Institute of Cornell
University, we were asked to determine if there might be phase transitions, or other
threshold phenomena blocking the way to success in this endeavor, and if so, what to do
about  it.   We  wrote  a  simulation  of  the  target  assignment  and  tracking  problem.
Because of our concern with complexity and its scaling,  we treated the antennas as
spins, not agents, and looked first for a Hamiltonian that would give them the right
behavior, counting on statistical mechanics and temperature to handle the negotiation
part.  It worked rather well, although there were a few inventions required to find a way
to make everything work.  What follows is lightly edited from our progress reports.
After describing our effort, we conclude with comments on the role of phase transitions
in this sort of large scale engineering problems as they continue to grow in scale over
future decades.

Physics-inspired negotiation for Sensor Array self-organization

We  implemented  a  family  of  models  which  borrow insights  and  techniques  from
statistical physics and use them to solve the sensor challenge problem under a series of
increasing restrictive real-time constraints.   We describe results  with fairly  difficult
communications  constraints  and  moving  targets,  covering  the  phases  from  target
acquisition to tracking.  The method can deal with momentary overloads of targets by
gracefully degrading coverage in the most congested areas, but picking up adequate
coverage as soon as the target density decreases in those areas, and holding it long
enough for the target’s characteristics to be determined and a response initiated.  Our
utility  function-based  approach could  be  extended to  include  more  system-specific
constraints yet remained efficient enough to scale to larger numbers of sensors.

Our model consists of 100s of sensors attempting to track a number of targets. The
sensors  are  limited  by  their  ability  to  communicate  quickly  and  directly  with
neighboring  sensors,  and  can see  targets  only  over  a  finite  range  (which probably
exceeds the range over which they can communicate with one another).  We take the
communication  limits  to  be  approximately  the  values  that  arise  in  the  Seabot
deployment by MITRE.  This is modeled probabilistically.  Initially we assumed that
there is 90% probability of a communication link working between two neighboring
sensors, 50% probability at twice that distance, and 10% probability at three times that
distance,  using  a  Fermi  function  for  the  calculation  at  an  arbitrary  distance.
Subsequently, we explored other characteristic cutoff ranges for communications, using
the same functional form for the probability of communication. At the start of each
simulation we use this function to decide which communication links are working.  The
range at which a target can be tracked is a parameter which we vary from a minimum of
1.5 times a typical neighbor distance to 4 times this distance.  Sensors are placed on a
regular lattice, with positions varied from the lattice sites by a random displacement of
up to 0.1 times the lattice spacing.  We considered three lattice arrangements to give
different  spatial  densities – honeycomb (sometimes called hexagonal) was the least
dense, then square lattice, then triangular lattice.  But the precise lattice geometry made
little difference beyond the changes in sensor density that resulted, so most work was
carried out with a square array of sensors, randomly displaced as described.
   
Since three sensors must track a given target before an action decision can be taken, this
means that at most 33 targets/100 sensors can be covered when no other constraints
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appear.  We treat each sensor as capable of making independent targeting decisions.
Moreover,  each sensor is aware of what targets each of its immediate  neighbors is
tracking.  We define a utility function which is a sum over the quality of coverage F(n)
achieved on each target, and depends on n, the number of sensors that are tracking that
particular  target.   If  exactly  three  sensors  are  tracking  the  target,  the  function  is
minimized.  If more than three are tracking the target, the function increases (becomes
less good) slowly, to discourage wasting sensors that could be helping to track other
targets.  If less than three are tracking the target, the function increases sharply, since
this is the situation that we want to avoid.  We have developed a version of this utility
function which works well on the easy problem with no communications or target range
constraints.  (Think of this as having all the sensors on one mountaintop, all connected
to each other, and all targets at a distance.)  We have then applied the same utility
function to the harder problem of an extended array of sensors, with targets moving
between them.  The function is plotted as Fig. 1:

Fig. 1  Utility function for a single target tracking cluster.

We look for Target tracking Connected clusters, called TC clusters of 3 or more sensors
(all connected and all tracking the same target).  Since any connected cluster of 3 or
more sensors has at least one sensor which has two neighbors, this assures that an action
decision can be reached.  To calculate the utility function, we find, for each target, the
TC clusters tracking it.  Each TC cluster, with n sensors, contributes F(n) to the utility
of the whole solution.  Note that there may be more than one cluster of sensors tracking
a given target, with no direct communications links between members of the different
groups, if the distance over which a target can be seen exceeds the sensor spacing.
There are benefits of having this occur.  This will make the calculation more readily
distributable, and the extra TCs may help to ensure successful handoff of fast moving
targets.

Initially we assign each sensor to a randomly selected target within range.  We then use
simulated annealing to improve the solution.  The annealing process consists of each
sensor independently and asynchronously considering switching to tracking some other
target, and accepting the possible change if the utility function’s value will be decreased
by the change.  If the utility function increases at simulated temperature, T, the move
may still be accepted, but with probability exp(- (Efinal – Einitial)/ T).  This is a standard,
robust method from optimization theory and it turns out to be a very good starting point
for deriving fully distributed search algorithms.  

The simulated annealing process can work extremely fast.  For the problem without
communications constraints very high quality solutions were obtained when each sensor
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tried 1 to 3 target choices at each of only 3 temperatures.  We have tuned our approach
to the constrained problems to determine how robust this method will be at different
points in the “phase diagram” of sensor to target range, sensor communications range
and delays.  Our phase diagram parameters are:

• Average number of sensors communicating with a given sensor
• Average number of sensors in range of an arbitrary target
• Ratio of total number of targets to total number of sensors

We  can  use  these  normalized  parameters  to  map  out  a  phase  diagram of  feasible
solutions  (when  the  targets  are  uniformly  distributed),  and  we  use  exact  methods,
limited to solving for very small numbers of sensors and targets, to identify the point at
which  a  solution  is  50%  likely  to  be  possible  for  a  random,  roughly  uniform
arrangement of targets.  We then use our dynamic solution to treat a more difficult case
– a swarm of targets  arrive from outside the target array, then spread out,  turning
randomly as they proceed.  In this case we must deal at first with a load which is higher
than average, and targets which keep appearing from outside the boundaries of the array
(to keep the total number constant as other targets exit).  These results can be viewed in
two  ways  –  impressionistically,  as  movies  at
http://www.cs.huji.ac.il/~jsch/beautifulmovies/movies.html , or more quantitatively by
measuring the actual length of time that each target is adequately covered by one or
more target connected clusters (TC clusters) in the sensor array.  Each movie is actually
an animated GIF file and rather large.  When we first constructed these, each required
about 20 MB.  Subsequently we found better encodings that reduced them to about 2
MB each.  They provide the raw material of our study.  Finding good ways of analyzing
the performance of the whole system from the scenarios in the movies was one focus of
our research in this area.  We developed arguments for using these overall performance
metrics as an assay for the rough location of the phase boundary to the region where
good solutions could be found. 

The conventions for the movies are as shown in the sample frame (Fig. 2) below.  Each
sensor is identified by a blue cross.  The sensors that are tracking a target and part of a
TC show the antenna sector as a blue wedge.  The targets are green dots, and each
target is surrounded with a green circle showing the range within which it can be sensed
-- every sensor within that green circle can see the particular target if it chooses.  Red
lines connect sensors and targets tracked in a TC.  The thermometer bar on the right
represents  the  fraction  of  targets  covered  by  one  or  more  TC’s.   The  wedges
representing antenna sectors reflect a “real-world” issue that we inserted at this point
without actually modeling it as a constraint, and were later able to include within our
optimization approach.  Each of the prototype Doppler radars in the study had three
antenna cones, each cone capable of observing 120 degrees of azimuth.  Only one cone
could be active at a given time, and there were power and delay penalties for switching
the sensor from one sector to another.  We assumed that the sectors were oriented at
random,  with  their  angles  fixed  during  the time that  was  simulated.   This  sort  of
complication  is  extremely  hard  to  add  at  late  stages  of  an  explicit  programming
approach, as would be typical of multiagent negotiation methods, but we were easily
able to explore it in our simulations.
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Fig. 2  Sample frame from our movies of target tracking

Our test scenario is that a fixed number of targets impinge on the array from one side
and cross the array while turning at random.  Each time a target exits the array, a new
target is introduced at a random position on the entry side to keep the total number
constant.  We run the “movie” simulation for 100 time steps, roughly three times the
time it takes for each target to cross the array.  We have developed several ways of
evaluating the overall results of the simulations, but it may help to watch the actual
movies.  They may be downloaded from the group’s website at the Hebrew University,
http://www.cs.huji.ac.il/~kirk .  

Fig 3.   Sample movie frame summarizing the number of TCs covering each of 10
targets (a) on left, or 30 targets (b) on right. 

Before each movie starts, we show the communication links that were in effect for the
duration of the scenario.  To summarize all the frames in a movie, we show a coverage
summary at the end of 100 iterations.  The numbers summarize the parameters of the
movie, while the horizontal lines (one for each target) code for coverage during the 100
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iterations.  The color code is: no color – uncovered; red – one TC covers the target;
green – two TCs; blue – three TCs… Purple and colors indicating still more TCs are
occasionally seen in the very easy cases as in Fig. 3a.  As target density increases, the
gaps with no TCs forming for a given target get longer, and the periods of multiple
coverage shorter, as seen in Fig. 3b.
 

Fig. 4  Total (red datapoints) and maximum continuous (blue data points) target
coverage achieved with 10 targets present at any one time.  A total of 30 targets were
tracked during the 100 timesteps.  100 sensors, CR10 (“CR” = communication range;

see text below for its definition). 

To analyze the effectiveness of coverage, we also plot at the end of each movie the
amount of time that each target was either tracked, or tracked continuously, against the
time that it was in view of the sensor array.  An example of this is shown in Fig. 4 and
is discussed in more detail below.

At first, in the movies, we took many more simulated annealing iterations than were
necessary  for  optimization  alone,  in  order  to  measure  physical  quantities  like
susceptibilities  that  characterize  the  process.  This  is  useful  in  determining  the
temperatures to be used for annealing.  We then reran some of the same tests  with
factors of 1000 to 100,000 fewer sensor target assignment changes attempted during
each  iteration.   The  payoff  for  this  is  in  reducing  the  message  traffic  between
neighboring sensors, since they need to communicate with each other each time they
choose to focus on a different target.  The quality of the results, measured in terms of
fraction of  targets  covered,  was  almost  unaffected  by  our  1000-fold  speedup,  and
slightly decreased by our 10,000-fold speedup, but the message traffic becomes quite
reasonable, as the Figures 5 and 6 show: 
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Fig. 5.  Quality of solution, plus measures of communications cost for 1000-fold
speeded-up simulated annealing.

For 1000-fold speedup, (shown in Fig. 5 on a case with 20 targets, square lattice, target
range = 3 nearest neighbor distances), we need to exchange 10-12 messages per sensor
during each iteration step.  The actual  fraction of sensors which retain their  target
assignment from one iteration to the next is only 20-30%.  In our 10,000-fold speedup
(Fig. 6, for the same overall parameters),  the bandwidth required has been reduced to
one or two messages per sensor per iteration, and typically half of the sensors change
their target assignment every iteration, but the quality of coverage is reduced.

To solve the problem time step after time step when the targets have moved for some
short interval,  we start with the previous solution.  As the targets move, we simply
“bounce” the temperature back up to a low value, and anneal again to convergence.
This  process  can  continue  as  long  as  there  are  targets  to  be  tracked.   In  a  fully
distributed implementation of our approach, the time steps for updates could either be
roughly  synchronized  or  asynchronous.   At  present,  our  simulations  assume
synchronous time steps.
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Fig. 6.  Quality of solution for 10,000-fold speeded up simulated annealing.

In fact,  this  process  of  reevaluating  our  solution  in the  light  of  changes  in  target
positions involves a “renegotiation” of the sensors’ tracking assignments, very much
like  what  all  the  multiagent  methods  carry  out.   By  controlling  the  size  of  the
temperature “bounce,” we can compare the results of “greedy” one-step agents with
what will happen with increasing degrees of renegotiation.  Our conclusions are that the
results of modest amounts of renegotiation sometimes help, and sometimes hurt, while
more systematic renegotiation, with enough retries to work out mistakes introduced, is
needed.   Our systematic annealing to a modest temperature always gave still  better
results, but the further improvements available are very small for easy cases, and of
greatest value close to the phase boundary, when the number of targets is sufficient to
begin to overwhelm the sensor array. Another way to look at the tradeoffs involved is
that the boundary of the parameter space in which good solutions are quickly found
shrinks as the agents get simpler and are allowed less communications bandwidth and
time to do their jobs.  

We achieved rapid simulations of target assignment for tracking with both 100 and 400
sensor arrays, and more than 30 targets (with 100 sensors) or up to 120 targets (with
400 sensors) moving rapidly and randomly through the arrays.  We also imposed the
restriction that changing the particular 120 degree sector into which a sensor is looking
should be done as infrequently as possible to avoid delay and conserve power.  While
the quality of our results is reduced, the method still works well.  We interpret the result
of this restriction as a change in the boundaries of the “phase diagram”. 

In essentially all studies we assume that targets can be seen by the sensors up to a radius
of 30 units (3 times the lattice constant of 10 units).  We vary the range over which
communications links go from certain to be working to certain to fail.  We either quote
this  parameter  as  the “communications range  (CR)”  in the same units  or plot  data
against the mean number of sensors in communication.  We study values of CR from 1
to 20,  of which the values  CR= 7,  10,  and 14 are relatively plausible  cases.  The
numbers of neighbors accessible in each case are CR7 (2.8), CR10 (3.86), and CR14
(6.16).    
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Finally, we explore the phase boundary for the physical modeling approach, with gentle
annealing during each time step.  We then compare these results with the results in
which  “renegotiation”  during  each  time step  is  restricted  or  eliminated.   We then
introduce methods of controlling antenna sector usage more precisely, and give some
measurements of the solution quality changes that result.  

Phase boundary for target assignment:

The phase space of possible target swarm/sensor array combinations has at least three
parameters which we can study by considering sample scenarios in simulation.  These
are 

• Average number of sensors that communicate with a direct single hop
• Average number of sensors in range of an arbitrary target
• Ratio of total number of targets to total number of sensors

We have considered the effect of target detection range, and concluded that as long as
targets  are  detectable  well  outside  the  range  of  fast  communications,  the  first
parameter, communications range, is the more critical.  So in this report, we study the
effect of varying the ability to communicate from a situation where each sensor can
reach only one or two neighbors in a single hop, to where a dozen or more neighbors
can communicate directly.  

The second summary figure (an example is shown in Fig. 4) after each movie is a
scatter plot,  for each of the targets that entered or crossed the sensor array, which
shows as a red data point the total number of time steps of successful tracking by the
array, and as a blue cross the longest consecutive string of time steps in which tracking
was achieved.  The horizontal axis in this figure is the number of time steps that the
target was within range of the array.  When all the data points cluster close to the
diagonal of this chart, we are successful in our tracking.  Without an accepted model of
how the sensors’ tracking information will be used, we do not know whether the total
fraction of the time for which a target has been accurately tracked or the time for which
tracking is continuous is more important.  If we can afford the overhead of creating a
target agent to develop information about a particular target and to maintain its identity
as it moves from one group of sensors to another, the total fraction of time the target is
resolved is probably critical.  If we want to use a simpler, more ad hoc architecture,
continuous tracking may be critical.   The fraction of time that  a target  is  tracked,
averaged over all targets that appear during a particular scenario, is the easiest single
measure of effectiveness to use in our analysis.  For example, consider the loss of
solution quality when running fewer iterations at each step in the annealing process
(below).  The average fraction falls only a little as we reduce the computing effort by a
factor of 10^6 in an easy case (10 targets, 100 sensors, good communications).  In a
more difficult scenario (20 targets), the falloff of average coverage is faster at first, and
then accelerates at speedups beyond 1000 X.  As a result of tests like that shown in
Fig. 7, we chose 100x as our standard speedup factor, to ensure reasonable results in
difficult cases.
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Fig. 7.  Falloff of quality of targeting solution as we speed up the simulated annealing
search at each time step.

To  determine  a  phase  boundary  in  the  targets/sensor  vs.  average  number
communicating parameter space, we looked at both average coverage fraction and the
distribution of continuous tracking times.   In both the average coverage and in the
number of targets which lived at least 30 time steps and were covered continuously for
at least 20 time steps, a “knee” in the curves indicated a rapid worsening of results as
we cross a phase boundary.  

Fig. 8 Decrease in coverage as a result of decreased communications range.  Both cases
in which antenna sectors are fixed at the beginning of each time step and those in
which they allowed to vary during the optimization of that time step are shown.

That  boundary shows the importance of communications restrictions in pulling  the
limiting number of targets/sensor down from 1/3 to nearly 0, a result of the increasing
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difficulty  of finding communicating neighbor sensors with which to share tracking
information.   

Fig. 9.  Decrease in average coverage as increased numbers of targets are tracked.
Both fixed antenna sector and varying antenna sector results are shown.

The resulting phase boundary that we determined from our movies is shown below for
the case in which constraints on changing antenna sectors were ignored:

Fig. 10.  Phase boundary inferred from the movies.  Sensors can see targets up to three
lattice constants (30 units) away.  Number of targets per sensor and number of sensors
which can be reached in one hop from a given sensor are the parameters explored here.

The next variation we have considered is control over antenna sector assignment, since
in  the  present  implementations  there  is  a  time  and power  penalty  for  shifting  the
Doppler radars from one 120 degree sector to another in order to follow a target which
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has moved out of view in azimuth.  We compare our previous results with adding the
restriction that each sensor chooses the sector in which it will focus at the outset of each
time step.  During the optimization that takes place over the ensuing time step,  the
sensor only considers targets which can be seen within the chosen sector.  This makes
optimization more difficult,  although the program does run somewhat faster, so that
perhaps shorter time steps could be used.  

In Fig. 8, we see that the effect of restricting optimization to a single sector is a small
decrease when there are many neighbors to form TCs with, and a severe decrease when
there are few.  We can turn this chart into an estimate of how much the phase boundary
(or threshold of effectiveness)  has moved in by comparing the points  at which the
average fraction of targets and time steps covered is 85%.  For the easier case, with 10
targets, this boundary estimate moves from 1.8 to 3.6 neighbors as the sectors are fixed.
For the harder case, with 22 targets, the boundary was at roughly 5 neighbors with
sectors varying during each time step.  With fixed sectors, 10 neighbors are required to
get the same coverage.  A similar analysis, looking in the direction of increasing target
density, is shown in Fig. 9.  If again we use 85% average coverage as our threshold
estimator, we see that with essentially unlimited communications (CR20) the threshold
moves down from 30 to 25 targets when we fix sectors.  At CR10, which is somewhat
communications-restricted, the threshold moves from 20 targets down to about 17.  For
CR7, at which point each sensor can, on average, talk directly to less than three others,
the threshold moves down from 13 to 9 targets.

Remapping the phase boundary shown in Fig. 10 using results in which sector changes
were only allowed once within each time step showed only a small shrinkage of the
phase boundary.  About 8% in average coverage was lost in typical cases away from the
phase boundary, but the maximum continuous coverage increased, as sensors were less
likely to divide their attention between multiple targets on different timesteps.

Larger arrays and measures of solution efficiency:

In the physical modeling approach, our total computational costs are at least roughly
linear in the size of the problem.  This means that a fully distributed computation sees a
cost per sensor which is roughly constant as the size of the overall array increases.  The
only exposure in our approach is that if there are few targets, each TC which is being
evolved as the targets move can be quite large, potentially growing to fill the size of the
region  over  which  the  target  is  visible.   A  similar  problem  occurs  in  cellular
communications, and is solved by power control, to keep cellular clients visible only as
far as is necessary to ensure good handoff continuity.   We did not implement such
“visibility management” in our simulations.  

How big might a sensor array get?  Using Seabot rough numbers,   if  we deploy a
Seabot sensor every 100 meters around a stationary asset such as a refueling aircraft
carrier,  up to a radius of a few kilometers,  we can easily arrive at arrays of a few
thousand sensors which need to be managed and their observations collected, evaluated,
and communicated.   Our simulations of 100 sensor arrays have required 10 ms per
sensor per timestep to execute on 1GHz PIII Linux computers, using the conservative
speedup  of  100X.   This  can be  reduced  to  1  ms  per  sensor  per  timestep  without
significant loss of solution quality over most of the phase space.  It was hard to resist
simulating bigger arrays using the physical modeling approach, simply to make the
scalability of the approach evident.  We also wanted to see if there is an increase in the
computational cost per sensor.  We doubled the linear dimensions of the array, and
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show  a  series  of  “movies”  with  a  20x20  array  of  sensors  at
http://www.cs.huji.ac.il/~jsch/bigmovies/movies.html .   One  typical  example  from
these,   with  40  targets  and  a  communications  range  of  14  can  be  found  at
http://www.cs.huji.ac.il/~kirk/darpa/film.gif.  The  computational  cost  of  simulating
arrays 4x our previous size did increase, but by only about 2x.  We think the major
compensating factor in this sublinear increase is the larger TC sizes encountered in
regions  with  low  target  density,  since  that  implies  that  sensors  change  their  TC
affiliation less often.  

Conclusion and comments

Statistical  mechanics  is  more  than a  metaphor  for  complex  systems.   My personal
experience in developing optimization or solution schemes for large scale engineering
problems is that stochastic methods have advantages in both ease of application and the
possibility of generalization.  While exact deterministic methods for carefully defined
(and well understood) problems can be faster, these often do not generalize to handle
constraints that subtly change the nature of the problem.  In the real world, these usually
get added before one is done developing a solution.

In this problem, one’s physical intuition is clear.  There are regions of the parameter
space in which a solution is possible, and other regions in which it is not.  Between
them must lie a phase boundary.  Obvious questions that this raises are:  is it sharp in
the limit of an extremely large system, and how far from this boundary are its effects
visible in a finite system?  Are the associated effects found in the phase transitions that
occur  in  materials  also  present  here,  such  as  diverging  correlation  lengths  (for
continuous transitions) or nucleation phenomena (for discontinuous transitions)?

One partial answer comes from Friedgut’s theorem about when thresholds are sharp and
when they are not.  He considers monotonically increasing properties, such as the size
of the largest connected cluster, which grows steadily as bonds are added to the sites in
a random graph. Statements such as “the largest connected cluster has no more than O
(log N) sites when there are N sites and M bonds in the graph” pass from being almost
always true to being almost always false over a range of ratios M/N which narrows as
the numbers N and M increase.  Loosely speaking, Friedgut has shown that this is true
because  the  number  of  example  subgraphs  which  can  be  used  to  either  prove  or
disprove the statement grows enormously as N grows.  This leads to a weaker definition
of sharp threshold than physicists have in mind when they think about phase transitions.
But its generality supports the basic physical intuition.  A second test, due to A. B.
Harris, describes phase transitions that do not sharpen as the system size diverges.  His
criterion is  essentially  that  the correlation length for  the type  of  ordering which is
beginning to occur as one approaches an ordered phase from one in which the order is
absent may not increase rapidly enough to allow the laws of large numbers to average
the  heterogeneous  local  environment  into  some  more  sharply  characterized  global
properties.   His  criterion  for  smeared  transition  might  apply  to  some  of  these
heterogeneous  optimization  and  engineering  problems.   We  still  do  not  know  if
problems  become  more  or  less  homogeneous  as  we  approach  “Avagadro-scale”
engineering?

We  have  observed  differences  in  style  in  multiagent  programming  vs  defining  a
statistical  physics-like  system  that  gets  the  job  done.   In  the  physical  modeling
approach, we are satisfied with ergodic local moves and iterative computation which,
when distributed,  is  quite  inexpensive.   Multi-agent  programmers  paying  a  huge
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constant factor in programming cost up front.  They claim that they also scale due to the
ability to distribute the computation.  However, multi-scale coordination occurs without
explicit effort in the statistical mechanics approach.  Will it also be seen with statically
programmed agents?  I am skeptical, suspecting that the agents will have to invent a
controlling  hierarchy  as  scale  increases,  and  that  this  will  have  to  be  explicitly
programmed in or learned with awareness of their contexts.  

References:

Simulated annealing science paper
S. Kirkpatrick,  C. D. Gelatt, Jr. and M. Vecchi, Science 200, 671 (1983). 

Simulated annealing algorithms in Press’ book
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical
Recipes in C: The Art of Scientific Computing,” 2nd Edition, Canbridge Univ. Press
(1993).

Bouncing and other non-monotonic annealing schedules
J. Schneider, I. Morgenstern and J.M. Singer, Phys. Rev. E 58, 5085 (1998).
P. N. Strenski and S. Kirkpatrick,  Algorithmica 6, 346 (1991). 

Stochastic Optimization -- Book in preparation by J. Schneider and S. Kirkpatrick
(Springer 2004).

ANTS program proceedings DARPA e-book, Summer 2003.
http://www.isi.edu/~szekeley/antsebook/ebook/ 

Friedgut’s theorem
E. Friedgut, J. Am. Math. Soc. 12, 1017 (1999).

Harris criterion for smeared first order transitions 
A. B. Harris, J. Phys. C7, 1671 (1974).

14


