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ABSTRACT
The realization of nuclear magnetic resonance (NMR) as a means to perform useful quantum
computations has warranted a detailed discussion regarding the physics and instrumentation
underlying the construction of a NMR quantum computer to facilitate the design of a desktop
quantum computer.

A brief overview of classical mechanics, quantum mechanics, and statistical mechanics is
presented with Newton’s first law as a starting point.  A correspondence between an initially
postulated classical magnetic moment model and first principles will be made, and methods for
the measurement and interpretation of macroscopically manifest observables are discussed.

An introduction to quantum computation will delineate the elements required for computation in
analogy to those required for conventional digital computation.  The advantages afforded
through the use of quantum computational algorithms are discussed, and the employment of
NMR to perform quantum computations is presented.

Design considerations for the instrumentation necessary to observe NMR with the cost and
physical constraints of a desktop apparatus are reviewed.  Low-noise and radio-frequency (RF)
instrumentation design needs and constraints are explained in the context of refining sensitivity
and frequency resolution requirements of an NMR spectrometer.  Experimental considerations
for the use of physical processes to enhance sensitivity and spectral resolution are also described.

Results from a desktop NMR spectrometer is presented with a prescription for future progress.

Thesis Supervisor:  Neil A. Gershenfeld
Title:  Director, Physics and Media Group, MIT Media Laboratory
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1 AN INTRODUCTION , MOTIVATION AND CONTEXT
The detection and identification of natural resonance is an old problem that has re-emerged with
new applications.  Advances in technology have paved the way for resonant structures to be
detected remotely, and allowed information to be encoded in their resonant signatures.  Through
careful use of materials, resonant structures have been demonstrated to be practical remote
temperature and moisture sensors; through careful construction,  they promise to bear many bits
worth of identification information.  Resonant structure have slowly woven themselves into the
fabric of our lives as anti-theft tags in libraries and stores.  In the near future, they promise to
offer a means by which to remotely locate, identify, and provide information regarding
themselves, an entity bearing them, or their environment.

Systems which are naturally resonant possess a common property:  they all absorb and
sometimes re-emit energy at a given natural frequency.  Figure 1.1 is an absorption spectrum of a
resonant object.  Examples of naturally resonant objects include inductive-capacitive tank
circuits, electromagnetic wave cavities, spring-mass systems, mechanical swings,
magnetostrictive materials, and bridges over the Tacoma Narrows.  For simple resonant systems,
if energy is used to drive resonant object, the object will absorb energy at its natural frequency.
If the object does not dissipate the energy, it will re-emit the energy absorbed at its resonant
frequency.  More complex resonant systems may possess many resonant frequencies, or modes,
all of which behave similarly.
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Figure 1.1:  Spectrum of a resonant structure.

The most fundamental of naturally resonant structures is the quantum mechanical spin of an
atomic nucleon or electron. Chemist and physicists have developed techniques by which to
manipulate and interrogate spins in a fashion similar to methods which are used for anti-theft
tags. These mature techniques fall under the study of nuclear magnetic resonance (NMR) and
electron paramagnetic (or spin) resonance (EPR or ESR).  These techniques have enabled
scientists to learn about the immediate (chemical) environment of proton and electron spins,
leading to developments such a the determination of protein structures and dynamics.

The observable states of a spin are binary, either spin-up or spin-down.  Such a description is
highly suggestive of a digital bit, which takes either a logical value of one or zero.  David
DiVinchenzo noted that a NMR experiment named electro-nuclear double resonance (ENDOR)
resembles the logical operation XOR.  Seth Lloyd outlined a proposal for how spins maybe used
as bits for a classical single-instruction multiple data cellular automata (SIMD-CA) computer.
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The ultimate goal of his proposal is the creation of a quantum computer—a computer whose bits
behave quantum mechanically (referred to as qubits)—to perform computations at rates
unapproachable by present-day classical computers.

There are a couple reasons to consider practical quantum computation.  Attempts to perform
faster and faster computations have demanded the fabrication of denser microprocessors, use of
faster clock speeds, and the use of many processors in parallel.  The progressive use of these
methods to achieve faster computation rates will soon meet economical and physical limitations.

The facilities to support further scaling reductions to fabricate denser processors currently cost
roughly $5 billion to build.  For the past three decades, the rate for the cost for building micro-
fabrication facilities has been growing exponentially.  At the present rate of increase, the
construction of fabrication facilitates required to support continued advances will eventually cost
the equivalent of the Earth’s GNP.

Physically, semiconductor pitch sizes can only decrease until linewidths are a single atom in
size.  The use of faster microprocessor clocks also finds physical limitations.  Clocks running at
near gigahertz frequencies expend great amounts of energy and raise issues regarding clock
distribution due propagation delays and transmission line effects.  The clock can deliver its
signal only as fast as light will travel.  The use of parallel processors is limited by physical space
and heat dissipation.  Current massively parallel computers require a large racks of processors
and memory and a room full of cryogens to prevent meltdown.  Any hope to realize
computations beyond silicon implementations requires a dramatically different paradigm.

Quantum computation finds its speed in exploring an exponentially large Hilbert space, as
opposed to physical space.  It is not constrain by the same limitations as silicon-based
computers, but rather those of quantum mechanics.  Quantum computation has been a topic of
theoretical rhetoric for decades.  Much has been said about its potential for ultra-fast
computations, most notably for polynomial time prime factorization of large numbers, but not
until recently has work been undertaken to demonstrate its practicality.  Early attempts used
quantum cavities and atom traps to isolate individual quantum entities to perform simple two-bit
operations.  These experiments required unwieldy instrumentation, years of development, and
were limited to computation with a couple of bits.

A recent experimental breakthrough in the field involved the use of thermal ensembles in bulk
materials to perform quantum computations.  Neil Gershenfeld and Isaac Chuang realized that
NMR techniques provide a means by which to effect a quantum coherent computation using
spins as qubits.  NMR techniques can be adapted to set initial conditions, apply an algorithm, and
read out results on spin systems—operations required of a computer.  This development
presently promises ten-bit computations in liquids, allowing for the development and testing of
quantum computational algorithms.

1.1 Aperitif
A natural place to form intuition for magnetic resonance is the classical magnetic moment model
described analytically by the Bloch equations and pictorially by the Purcell vector model.  A spin
in a time-invariant (DC) bias magnetic field can be thought of as a charge revolving abut an axis.
It generates a magnetic field equivalent to that of bar magnet and possesses an angular
momentum.  This spinning bar magnet can be represented as a vector called a magnetic moment.
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The magnetic moment points in the direction of the north pole of the magnet, as in Figure 1.2.
The direction of the magnetic moment µ can be described in the Cartesian coordinate system in
terms of the components µx

, µy
 and µz

, in the x, y, and z bases; the magnitude never changes, since
the size of magnet never increases.
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Figure 1.2:  The Purcell vector model.

The nature of the magnetic moment is to align itself with the bias magnetic field, much as bar
magnets on a table re-orient themselves so that opposite poles attract to maintain the lowest
energy configuration possible. The magnetic moment is in its lowest energy configuration when
aligned with the bias magnet field.  When the magnet is anti-aligned with the field, its possesses
the most energy it can acquired.

In equilibrium, the magnetic moment is completely aligned with the bias field and noted as µ0
.

By convention, the bias field is designated to be in the z-direction, so the equilibrium magnetic
moment, µ0, is also in the z-direction.  If the moment is tipped away from the bias field axis,
energy has been imparted to the it.  Something did work on it to tip it away from the lowest
energy configuration. However, when an magnetic moment is tipped away from alignment with
the bias magnetic field, classical electromagnetism requires that the bias field to apply a torque
to the magnetic moment due to its intrinsic angular momentum.  Since the applied torque is also
the time-derivative of the angular momentum,

&
&

& &
τ

µ
µ γ= = ×

d

dt
B ,

the magnetic moment will precess about the bias field like a gyroscope in a gravitational field.
The coefficient on the magnetic flux, γ, is the gyromagnetic ratio of the magnetic moment.  The
rate at which the magnetic moment precesses about the bias field is set by the strength and
direction of the bias field, and is called the Larmor precession frequency,

& &
ω γ= B .

As the magnetic moment precesses, it accelerates.  As it accelerates it radiates.  As the magnetic
moment radiates, it loses energy and slowly returns to its equilibrium position.  Hence, the z-
component of the magnetic moment has a decay term in its evolution, characterized by a decay
constant T1

,

d

dt T
z zµ µ µ

= −
− 0

1

.
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In a bulk sample with many, many magnetic moments, the net bulk magnetization of the sample
is simply the vector sum of the individual magnetic moments,

& &
M i

i

= ∑µ .

The corresponding equation of motion for the bulk magnetization is,

dM

dt
M B

&
& &

= × γ ,

with the decay of the z-component of magnetization as

dM

dt

M M

T
z z= −

− 0

1

.

If energy is introduced to the sample to tip the magnetic moments, then all the individual
magnetic moments precess together.  The x- and y-components of the bulk magnetization are a
reflection of this group precession.  However, in a bulk sample, each magnetic moment will
interact with its neighboring magnetic moments.  By virtue of being a small bar magnet, each
individual magnetic moment alters the field immediately around it.  What results is each
magnetic moment will perceive a different local bias field and have a different Larmor
precession frequency.  Within the sample, some magnetic moments will precess slower than
others.  As the individual magnetic moments fan out, the x- and y-components of magnetization
cancel.  The effect is accounted for by the decay of the x- and y-components of the bulk
magnetization characterized by a second time constant, T2

,

dM

dt

M

T
x x= −

2

dM

dt

M

T
y y= −

2

.

The combined expressions for torque and decay of bulk magnetization due to individual spin
magnetic moments yield

[ ] ( )dM

dt
M B M B

M M

T
z

y z z y

z= − −
− 0

1

[ ]dM

dt
M B M B

M

T
y

z x x z

y= − −
2

[ ]dM

dt
M B M B

M

T
x

z y y z
x= − −

2

.

These are the Bloch equations.

It is important to note the difference in the bulk magnetization decay mechanisms.  The
mechanism for T2

 decay is different from that of T1
.  T1

 decay is irreversible; it is due to energy
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exchange with the environment, and only effects the z-component, or the longitudinal
component, of magnetization.  T2

 decay is reversible, and is simply due to the individual
magnetic moments precessing out of phase with each other.  By its nature, it only effects the x-
and y-, or the transverse, components of the bulk magnetization.

Though the Bloch equations and Purcell vector model accurately explain the macroscopic
manifestations of spin, they neglect the quantum mechanical nature of spins.  The pre-requisite
for a candidate quantum computer is a physical system which allows for the manipulation of
quantum mechanical entities without unnecessarily disturbing them.  A quantum mechanical
system must assume a quantum states when it is disturbed;  a disturbance consists of any attempt
to observe or manipulate the system.  When a quantum mechanical system is disturbed, it loses
any quantum mechanical complexity it may possess to assume a single state.   It is this
complexity which allows quantum computations to be completed faster than traditional
computations.

To understand how NMR systems allow for a quantum computer to be initialized, manipulated,
and read without the loss of quantum mechanical complexity requires an understanding of the
quantum mechanics and statistical mechanics which underlie the Purcell vector model and the
Bloch equations.  To this end, those descriptions of physics will be introduced beginning with
the most fundamental of physical laws, Newton’s first law.  Once the foundation has been laid,
the formalisms of quantum mechanics and statistical mechanics will be used to illustrate in full
detail the phenomena of magnetic resonance.  The Bloch equations will be re-derived from first
principles, and the connection between NMR and quantum computation will be made.

1.2 Overview
Section 1:  An Introduction, Motivation and Context
The problem addressed in this thesis, the design and construction of a desktop quantum computer
is introduced and motivated.  An intuitive picture is provided for the physical system used to
implement quantum computation.

Section 2:  Background
Underlying quantum computation are very fundamental physical processes.  The background
required to understand NMR quantum computation requires preparation in quantum mechanics
and statistical mechanics, which both use Hamiltonian dynamics to describe physical systems.  A
natural introduction to these studies is made beginning with classical mechanics and Newton’s
first law.  The eventual derivation of the Hamiltonian formulation for the study dynamical
systems is followed with introductions to the mathematical formalisms of quantum mechanics
and statistical mechanics.

Section 3:  The Problem of Magnetic Resonance
Magnetic resonance is formally introduced from first principles.  The connections between
quantum mechanical effects and physically observable processes are drawn.  The relations stated
in the Aperitif are reconciled with expressions derived from quantum mechanics and statistical
mechanics.

Section 4:  NMR Quantum Computation
The premise of quantum computation is outlined.  The use of NMR as a means to perform
quantum computations is introduced.
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Section 5:  Instrumentation Design Considerations
A model for a general NMR spectrometer is offered, and design considerations are provided in
the context of available technologies.  Physical noise sources and sources of external interference
are introduced with techniques to manage their influence on measurement electronics.

Section 6:  Experimental Considerations
An overview of possible experimental techniques to enhance signal-to-noise is presented.
Averaging techniques, physical preparation of the spin system, and polarization transfer
techniques are discussed.

Section 7:  Instrumentation Design and Construction and Experimental Methods
The instrumentation and experimental methods used to observe magnetic resonance signals is
detailed.

Section 8:  Results
The results obtained from the experiments are objectively displayed in time-series plots and
spectra.

Section 9:  Reflections
A short discussion regarding the results is offered.  A general direction for continued research is
outlined, and a specific proposal is made.
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2 BACKGROUND
The physics of magnetic resonance covers a broad range of physical ideas and offers a simple,
yet broad introduction for a beginning student interested in physics.  The basis of NMR is the
manipulation and interrogation of quantum mechanical spins.  Spins are purely quantum
mechanical entities which can be described classically as magnetic dipoles.  Though these
classical analogs are helpful to develop intuition, their validity is limited.  Quantum mechanics
offers a description for the true behavior of spin systems, and shows how classical models relate
to quantum mechanical behavior.  In practice, spins are rarely isolated.  More often, they are
dealt with in ensembles.  Statistical mechanics provides a description of the macroscopic
properties of a material due to the aggregate behavior of individual constituents.  It is these
properties which are observed in NMR experiments.

2.1 Classical Mechanics
Classical mechanics describes the world with which people are familiar:  the macroscopic, the
physics of our intuitive reality—big things moving slowly.  The most basic formulation of
classical mechanics is Newtonian mechanics, which is embodied in Equation (2.1.1),

& &
F mr∑ = ��  (2.1.1).

The vector sum of the forces felt by a system is equal to the acceleration of the system scaled by
its total mass.  Described by this equation, a system can be fully characterized at any moment in
time.

2.1.1 The Lagrangian Formulation
Though the expression for the force acting on a system may indicate that it has a given number
of degrees of freedom, the system may actually be constrained to move in only a few of those
degrees of freedom.  The classical example of a constraint problem is a bead threaded on a loop
of wire.  The loop is two-dimensional, so the equation of motion for the trajectory of the bead
can be described in terms of two degrees of freedom.  But, the bead is constrained to travel along
the wire, it can only move in one-dimension—forward or backward.  It only possesses a single
degree of freedom.  Though a problem can be initially described in a conventional coordinate
system, ri

 (e.g., Cartesian, spherical), underlying those coordinates is a set of generalized
coordinates, qi

, which succinctly describes the system in its true, independent degrees of
freedom,

& &
r r q q q qi i n n= −( , ,... , )1 2 1 .

To understand how forces are altered under the transformation from a standard coordinate
system to a generalized coordinate system, the principle of virtual work is employed.  Equation
(2.1.2) defines a virtual displacement.

δ
∂
∂

δ&
&

r
r

q
qi

i

m
m

m

= ∑ (2.1.2).

To visualize the dynamics of systems, configuration space is used.  Configuration space is
constructed using the position and the rate of change of the position as its axes.  For a one-
dimensional system, configuration space is a graph with the position on the horizontal axis and
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the position’s first derivative in time on the vertical axis.  Additional degrees of freedom require
additional pairs of axes per degree of freedom.  A virtual displacement is an infinitesimal change
in the configuration space.  Virtual work is then defined as the dot product of the forces acting on
the system and the virtual displacement, as in Equation (2.1.3).

W F rvirtual i
i

i= ⋅∑
& &δ (2.1.3)

Associated with generalized coordinates are a generalized forces.  The substitution of Equation
(2.1.2) into Equation (2.1.3) yields an the expression for virtual work in terms of generalized
coordinates and generalized forces.

W F
r

q
qvirtual i

i

i

mm
m= ⋅∑ ∑& ∂

∂
δ = ∑Q qm m

m

δ (2.1.4)

where,

Q F
r

qm i
i

i

m

= ⋅∑ ∂
∂

is the generalized force in the mth direction.  As with the Newtonian formulation of classical
mechanics, the purpose of this analysis to determine the equations of motion for a system.  To
continue, the following relation is established,

& &
F p= � ,

where
& &
p m vi i i=

is the momentum of the system, and

&
& &

v
r

q

q

t

r

ti
i

jj

j i= +∑ ∂
∂

∂
∂

∂
∂

is the velocity.   Thus,

d

dt

r

q

v

q
i

j

i

j

∂
∂

∂
∂









 =  (2.1.5)

by exchanging the order of differentiation.  From the velocity expression

∂
∂

∂
∂

v

q

r

q
i

j

i

j�
= (2.1.6),

where
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�q
q

t
≡

∂
∂

.

 Returning to the expression for virtual work,

& & &
F r p ri i

i
i i

i

⋅ = ⋅∑ ∑δ � δ

= ⋅∑m v ri i i
i

&� δ

= ⋅∑∑m v
r

q
qi i

i

j
j

ji

�
∂
∂

δ

= ⋅∑∑ m r
r

q
qi i

i

j
j

ji

��
∂
∂

δ

= ⋅








 − ⋅






















∑∑ d

dt
m r

r

q
m r

d

dt

r

q
qi i

i

j
i i

i

j
j

ji

*
&

*
&

� �
∂
∂

∂
∂

δ ,

where the right-hand side of the final expression can be deduced using the product rule of
differentiation.  Making the appropriate substitutions from Equation (2.1.5) and Equation (2.1.6),

& & *
&

*
&

F r
d

dt
m r

v

q
m r

v

q
qi i

i
i i

i

j
i i

i

j
j

ji

⋅ = ⋅








 − ⋅






















∑ ∑∑δ

∂
∂

∂
∂

δ�
�

� .

Rewriting the two terms within the brackets to explicitly show the various differentiation
operations,

& &
F r

d

dt q
m v

q
m v qi i

i j
i i

j
i i j

ji

⋅ = 













 − 
















∑ ∑∑δ

∂
∂

∂
∂

δ
�

1

2

1

2
2 2 .

The kinetic energy of the system is T m vi i
i

= ∑ 1

2
2 , so the expression for virtual work reduces to

& &
F r

d

dt

T

q

T

q
qi i

i j j
j

j

⋅ =








 −












∑ ∑δ

∂
∂

∂
∂

δ
�

.

By expressing virtual work in terms of generalized coordinates and generalized forces,

d

dt

T

q

T

q
Q q

j j
j

j
j

∂
∂

∂
∂

δ
�









 −












−













=∑ 0.
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Since generalized coordinates are independent,

d

dt

T

q

T

q
Q

j j
j

∂
∂

∂
∂�









 − = (2.1.7),

where j indexes the set of N independent equations, and N is the number of degrees of freedom
accessible to the system.  If the forces applied to the system are derived from a scalar potential V
which depends solely on position, i.e.,

Q
V

qj
j

=
∂

∂
( )q

,

where q implies all the generalized coordinates,  Equation (2.1.7) can be expressed as the
Lagrange-Euler  equations,

d

dt

L

q

L

qj j

∂
∂

∂
∂�









 − = 0, 

where
L t T V( , �, )q q = −

is the Lagrangian.

Now, rather than performing a vector sum of all the forces acting on a system, reducing the
number of degrees of freedom through constraints, and then solving for the equations of motion
using Newton’s first law, the Lagrangian formulation takes into account the various constraints,
and allows for the generation of the equations of motion using a scalar expression involving
kinetic energy and potential energy.  The application of the Lagrange-Euler equations yield a set
of second-order equations to describe the dynamics of a system, like the application of Newton’s
equation yields second-order equations,.

This derivation of Lagrange-Euler equations employed D’Alembert’s principle, a differential
principle.  The derivation of Lagrange-Euler equations is usually performed using Hamilton’s
principle, an integral principle which produces equations of motion for systems which have
scalar potentials which describe conservative forces (i.e., not dissipative forces like friction).
Mathematically, Hamilton’s principle is an application of the calculus of variation, where

S L t t t dt
t

t

= ∫ ( ( , ), �( , ), )q qα α
2

1

is the path integral between two fixed point in configuration space called the action integral.
The action integral is minimized in the parameter α.  The Langragian is postulated to be the
difference between the kinetic energy and the potential energy, and the Lagrange-Euler equations
result as a condition for the minimization of the action integral.
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2.1.2 The Hamiltonian Formulation
The Hamiltonian formulation of classical mechanics builds upon the Lagrangian formulation to
provide more powerful tools to analyze dynamical systems (i.e., systems which evolve with
time).  Rather than using configuration space and second-order equations to analyze systems, the
Hamiltonian formulation uses phase space and a system of first-order equations.

To facilitate this change from configuration space to phase space and from second-order systems
to first-order systems, a new variable is introduced to describe systems.  In the Lagrangian
formulation, generalized forces and generalized coordinates describe a system in its true degrees
of freedom.  Related to each component of the generalized force is a momentum, which specifies
the momentum of the system in the direction of its associated generalized coordinate.  The
momentum is conjugate to its generalized coordinate.  Each generalized coordinate and its
associated momentum constitute a conjugate pair, and are denoted as (qi, pi

).  As a coordinate
and its time derivative define the axes for configuration space for the Largrangian formulation, a
conjugate pair defines a set of axes for phase space:  for a one-dimensional system, the
coordinate is the horizontal axis and its conjugate momentum is vertical axis.

At the heart of the Lagrangian formulation was the Lagrangian—once the Lagrangian was
determined, the system could be fully characterized for all time.  Similarly, the Hamiltonian
formulation of classical mechanics revolves around a expression called the Hamiltonian.  The
Hamiltonian and the Lagrangian are related through a Legendre transformation.  To perform the
Legendre transformation simply subtract the function to be transformed from the product of the
variables to be exchanged, i.e.,

L t H t( , �, ) ( , , )q q q p⇒ ⇒ H t q p L ti i
i

( , , ) � ( , �, )q p q q= −∑ ,

where H is the Hamiltonian.  To extract useful information from the Hamiltonian take its
differential,

dH
H

q
dq

H

p
dp

H

t
dt

i
i

i
i= + +

∂
∂

∂
∂

∂
∂

.

The Legendre transformation expression produces an equivalent expression,

dH p dq q dp
L

q
dq

L

p
dp

L

t
dti i i i

i
i

i
i= + − − −� �

�
�

∂
∂

∂
∂

∂
∂

.

Matching terms from the two expressions yields the definition for the conjugate momentum and
Hamilton’s equations.  Thus,

p
L

qi
i

=
∂
∂ �

  �p
L

qi
i

=
∂
∂

,

and
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�q
H

pi
i

=
∂
∂

(2.1.8a)

 �p
H

qi
i

= −
∂
∂

(2.1.8b)

∂
∂

∂
∂

L

t

H

t
= − (2.1.8c).

Equations (2.1.8) are Hamilton’s equations, which can be used to derive the equations which
govern the time-evolution of the system.

The physical interpretation for the Hamiltonian is apparent after massaging the Legendre
transformation equation,

H t q p L ti i
i

( , , ) � ( , �, )q p q q= −∑
= − +∑ � ( )q p T Vi i

i

q

= − +∑ � � � ( )q m q mq Vi i i
i

i

1

2
2 q

= +∑ 1

2
2m q Vi i

i

� ( )q

= +T V( )q .

Alas, the Hamiltonian is an expression for the total energy for a system with conservative
potentials.  For most systems of interest, this is the case.  Essentially, the Hamiltonian is the
energy function.

A final note regarding the Hamiltonian formulation of classical mechanics regards the evolution
of any measurable quantity.  The change of a quantity in time is expressed by its complete
derivative in time.  So, starting with a quantity A(q,p,t), consider its time derivative.  Using the
chain rule,

dA

dt

A

q
q

A

p
p

A

tii
i

i
i= + +∑ ∂

∂
∂
∂

∂
∂

� �

Recognizing the recently derived expressions from Hamilton’s equations, appropriate
substitutions yield

dA

dt

A

q

H

p

A

p

H

q

A

tii i i i

= − +∑ ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

.

By defining the Poisson brackets,
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{ }A H
A

q

H

p

A

p

H

qii i i i

, ≡ −∑ ∂
∂

∂
∂

∂
∂

∂
∂

which have the mathematical properties of anti-symmetry, linearity, and satisfy the Jacobi
identity under cyclic permutation, the time derivative of A can be expressed as Equation (2.1.9),

{ }dA

dt
A H

A

t
= +,

∂
∂

(2.1.9).

From Equation (2.1.9), it is apparent that encoded in the Hamiltonian is the dynamical evolution
of a quantity.  Also of note is that if a quantity has no explicit time dependence and produces a
zero when taken in a poisson bracket with the Hamiltonian, the quantity is a constant of motion.
The poisson bracket reveals underlying symmetries in a system.  In fact if any two quantities
taken in a poisson bracket yield a zero, the two quantities are completely independent of each
other.

However, in dealing with entities on a small scale, which in aggregate compose of the reality
which can be sensed and for which there is intuition, classical mechanics fails.  To deal with
small scale entities, quantum mechanics was developed.  Though quantum mechanics seems
magical, and produces results which seem physically impossible, the mathematical machinery by
which quantum mechanics operates is extremely similar to that of classical mechanics.

2.2 Quantum Mechanics
Quantum mechanics is phrased in terms of operators, spaces, and states.  These ideas are
represented in Dirac notation, and are introduced with the means to mathematically manipulate
them.  Though the notation may appear obscure initially, simple explanations and analogies will
reveal its beauty and generality.

The basis of understanding a quantum mechanical system is the consideration of its state.  The
state is of system contains all the information regarding the system.  If the system of interest is a
point-like particle, then the state of the system includes the particle’s position and momentum.
More complex systems, like a volume of gas, may have more properties to describe its state,
such as pressure and temperature.  To mathematically represent the state of quantum mechanical
system, a state vector is used, and from it is generated a wave function.  A state vector is
analogous to a vector in linear algebra, and contains all the information and all the properties
which describe the system; this state vector resides in Hilbert space, like a three component
vector resides in a three-dimensional space.

To extract information from and manipulate states requires the use of operators.  Operators are
conceptually easy to understand.  They can be thought of as machines which take an input and
spit out an output.  A negative sign can be thought of as operator—it takes a value and returns
the opposite of the value.  Differentiation and integration are calculus operators—they take a
function and return the derivative and integral of the function respectively.  Operators in linear
algebra take the form of matrices, which act as maps between vector spaces; this map
interpretation of an operator is valid and useful for all operators.
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2.2.1 Dirac Notation
Dirac notation is a general and concise mathematical description of quantum mechanics.  It
serves to define notions of states, spaces, and operators in a form which can be manipulated to
prescribe the physical behavior of a system.

The notion of a state and a space are intimately intertwined—a state exists in a space.  Operators
are used to map a given state in its initial space to a second space.  To represent a state vector,
Dirac uses bras and kets.  A bra and a ket are duals of each other.  In linear algebra, a column
vector is a dual of its transpose, the associated row vector.  They are not equivalent since they
exist in different spaces (if the column vector exists in a Nx1 space, then its transpose exists in a
1xN space).  In a similar way bras and kets are related; however, rather than being transposes of
each other, they are Hermitian adjoints of each other.  The crucial difference is that the ket is the
transposed complex conjugate of the bra and vice-versa.  The expressions in Equation (2.2.1)
illustrate this notion and explain the origin for the names bra and ket,

a ⇒ [ ]a a1 2 a bra, left-side of a bracket (2.2.1a)

a ⇒
a

a
1

2

*

*









 a ket, the right-side of a bracket (2.2.1b)

a a† =  † is the adjoint operation: a aT† = ( ) * (2.2.1c).

The a is simply a label for the state vector in question; the elements of a  are complex
numbers.  To add bras or kets, simply sum the corresponding components.  An inner product is
taken by multiplying a bra with a ket, in that order.  To form an outer product between the two,
simply reverse the order.  Equation (2.2.2) demonstrates mathematical manipulations in Dirac
notation,
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
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
 addition (2.2.2a)
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i j i j1 2
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1 1 2 2




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
 = +( ) inner product (2.2.2b)

| |a ai j>< ⇒ [ ]a

a
a a

a a a a
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i
j j
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i j i j

1

2
1 2

1 1 1 2

2 1 1 2









 =









 outer product (2.2.2c).

In the matrix formalism of quantum mechanics, linear algebra is used to perform calculations.
The correlation is apparently simple.

2.2.2 Properties of State Vectors
A state vector can be decomposed into a complete basis set, much as function can be
decomposed into Fourier components or a vector can be decomposed into its basis vectors.  In
quantum mechanics, the basis set is conveniently the set of eigenvectors.  An arbitrary state,
Ψ , can be described by the weighted some of its eigenvectors, ai

’s,
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Ψ = ∑c ai i
i

(2.2.3).

By virtue of being bases, these eigenvectors are orthogonal, so the inner product of an
eigenvector with second eigenvector is zero, unless the inner product is with itself, as in
Equations (2.2.4),

a ai j i j= δ , for denumerable eigenvectors (2.2.4a)

x x x x' ( ' )= −δ  for non-denumerable eigenvectors (2.2.4b).

Wave functions, the inner product of state vectors, are normalized, so that the sum of the
weighting coefficients, the ci

’s, sum to unity.  So, when constructing a general wave function
solution, normalization must be satisfied,

Ψ

Ψ Ψ
Ψ2 = ⇒ Ψ Ψ

2
1= .

These are the orthonormal properties of state vectors and wave functions.  Eigenstates form a
basis which must be orthogonal; wave functions are probability amplitudes which must be
normalized.

2.3.3 Operators
Operators are applied to states to manipulate or obtain information from them.  Using  the
orthonormal properties of bras and kets, an identity operator can be constructed.  The application
of a bra to a general wave function extracts the coefficient of that particular eigenstate,

c ai i= Ψ .

Substitution into Equation (2.2.3) yields

Ψ Ψ Ψ= ⋅ = ⋅∑ ∑a a a ai i
i

i i
i

,

which suggests the operator

a ai i
i

∑ = 1.

This is the identity operator, which is often used to change bases in the course of derivations.
This progression has also suggested an interesting possibility—the possibility of projecting out a
chosen component of a state.  Again, by employing the orthonormal properties of state vectors,

�A a ai i i= ,
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which is the projection operator.  When applied to a state vector, it yields the eigenstate scaled
by the weight of that eigenstate in the general state vector.  This operator collapses the wave
function into the chosen state.

Wave functions are generally not in a single eigenstate.  They are usually in a coherent
superposition of states.  To determine the expectation value of the operator,

A A A dx= = ∫Ψ Ψ Ψ Ψ� * � for non-denumerable quantities

A a A ai i= ∑ �  = ∑a ci i

2
for denumerable quantities

which is the same manner an expectation value of a variable is taken in probability.  The nature
of the wave function as a probability distribution is revealed.  If the wave function is, however,
in an eigenstate, then the expected value will simply yield the eigenvalue;  the adjoint of the of
the operator will produce the complex conjugate of the eigenvalue,

A a A a ai i i= =� A a A a ai i i
† †= =� * .

The implication for Hermitian operators, operators which are equal to their adjoint,

� �A A= † ,

is that their eigenvalues are real.

2.2.4 Dynamics
All quantum mechanical systems are Hamiltonian, and described by Hamiltonian evolution.  In
quantum mechanics, the dynamics of a system can be considered in two different, but equivalent
perspectives.  The first, is termed the Heisenberg picture.  Under this interpretation, quantum
dynamics is embodied in the operators.  The operators are explicit functions of time, and the
wave functions are static.  In the second interpretation, the Schrodinger picture, it is the wave
functions which evolve in time and the operators which remain static.  Mathematically, the two
interpretations are completely identical prior to evolution:

Ψ ΨS Ht t( ) ( )= =0 � ( ) � ( )A t A tH S= =0 .

In the Schrodinger picture, the parallel between quantum mechanics and classical mechanics
becomes apparent.  The dynamics of a wave function is again encoded in the system’s
Hamiltonian, and is described by the Schrodinger’s equation

i
d t

dt
H t!

Ψ
Ψ

( )
� ( )= .

The application of the Hamiltonian operator yields the time derivative of the state vector scaled
by a constant.  The actual time evolution of a wave function can be interpreted as the application
of a time-evolution operator to a state vector, which produces a state vector at a later time, i.e.,
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Ψ Ψ( ) � ( )t U t1 0= or Ψ Ψ( ) � ( )t U t1 0= † .

As a condition for the wave function to be properly normalized at each moment in time,

� �UU † = 1,

which is the property of unitarity.  Wave functions must evolve unitarily to conserve probability.
Massaging the expression for the unitary evolution of a state vector, employing Schrodinger’s
equation, and solving a first-order differential equation yields the time evolution operator

�

�

U e
i
H

t
=

−
! .

The form of this operator confirms the intuitive assertion of a normalized wave function at every
moment in time.  It describes the evolution of a wave function as rotations in Hilbert space.

Associated with every quantum mechanical observable D is a Hermitian operator�D .  The
measurement of quantum mechanical observable determines the expected value of the associated
operator applied to the wave function.  As in classical mechanics, the time evolution of an
operator is

( )d D

dt

d

dt
D≡ Ψ Ψ� .

Under the Heisenberg interpretation, the derivation is trivial since only the operator changes with
time.  The evolution of the observable, then, also relies solely on the time-derivative of its
associated operator.  In the Schrodinger picture of quantum mechanics, however, it is the wave
function which evolves,

d D

dt

d

dt
D D

d

dt
= ⋅ + ⋅Ψ Ψ Ψ Ψ� �

= − ⋅ + ⋅
1 1

i
H D D

i
H

! !
Ψ Ψ Ψ Ψ� � � �†

( )= −
1

i
DH HD

!
Ψ Ψ� � � �

where the Hermitian property of the Hamiltonian is used.

As in classical mechanics, a mathematical entity can be extracted from the derivation for the
dynamics of a measured quantity.  The quantum mechanical equivalent of the poisson bracket is
the quantum mechanical commutator, defined generically as

[ ] ( )� , � � � � �F G FG GF= − ,

which allows the derivation to be completed efficiently as



23

[ ] [ ]d D

dt i
D H

i
D H= =

1 1
! !

Ψ Ψ� , � � , � .

As with the poisson brackets, the commutator reveals the constants of motions of the system, and
speaks to the independence of measurable quantities of the system.

2.3.5 Measurement and Uncertainty
Two commonly used operators in quantum mechanics are the position and momentum operators.
These two operators are useful to introduce the notion of measurement.  Quantum measurement
is, in itself, a field of research, which deals with the limits of measurement precision imposed by
quantum mechanics on the simultaneous measurement of conjugate quantities and the extraction
of information from physical systems.  As in classical mechanics, in quantum mechanics, linear
momentum and position constitute a conjugate pair.  If a simultaneous measurement is made on
the linear momentum and position of a system, quantum mechanics limits the precision to which
each quantity can be measured. Mathematically, this is stated in the Heisenberg uncertainty
relation,

∆ ∆x p ≥
!

2
.

More generally, a state possesses different eigenstates for different operators, denoted as,

a bi i, , where ai
 is an eigenvalue for the operator A, and bi

 is the corresponding eigenvalue for

the operator B.  If the operators A and B commute, applying either operator first and then the
other produces the same results.  Mathematically, this is embodied in the commutator,

� � , � � ,AB a b BA a bi i i i= ⇒ [ ]� , �A B = 0 .

However, in a general wave function, two observables may not commute; the measurement of
one interferes with the simultaneous measurement of the other.  The Heisenberg uncertainty
principle speaks to the variance of measured quantities.  From operators of two non-commuting
observables, operators can be constructed,

∆ � �X X X= − ∆ � �Y Y Y= − .

A similarity to mathematical variances becomes apparent upon squaring the new operators,

( )∆ � �X X X
2 2 2= − .

Beginning with the Schwarz inequality,

( ) ( )∆ ∆ ∆ ∆� � � �X Y X Y
2 2 2

≥

and manipulating the right-hand side terms yields,
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( ) ( ) [ ]∆ ∆� � � , �X Y X Y
2 2 21

4
≥ ,

which is a general form of Heisenberg’s uncertainty relationship.  Again, the appearance of the
commutator on the right-hand side confirms the notion that non-commuting observables interfere
with the measurement of each other.  Commuting observables have no quantum mechanically
imposed limit of measurement precision when measured simulateously.

Uncertainty is fundamental to quantum mechanics.  In Hamiltonian dynamics, phase space is
used to completely characterize a system.  Since the axes of phase space are conjugate quantities,
uncertainty imposes strong limitations on the complete characterization of a quantum mechanical
system.  For quantum mechanical systems, phase space must, itself, be quantized into elemental
volumes to account for this imprecision.

To measure a quantum observable, measurements are either made on an ensemble of equivalent
systems or many measurements are made repeatedly on the same system.  The equivalence of the
two measurement philosophies and the study of large, aggregate systems constitute the study of
statistical mechanics, which ties macroscopic, thermodynamic properties to the microscopic
dynamics of the underlying constituent systems.  The formalisms of statistical mechanics also
provide a means to reconcile quantum physics with classical intuition.  It addresses the
shortcomings of Dirac notation when dealing with measurements made on equivalent systems
prepared in different states and the degeneracy of configurations which underlie the manifest
state of a system composed of many constituent systems.

2.3 Statistical Mechanics
Statistical mechanics is a method to describe aggregate physical processes, and is applicable to
ensembles of quantum or classical systems.  Its  beauty lies in its ability to predict the behavior
of systems composed of a large number of constituent systems without considering each
constituent system individually.  Particularly interesting is the manner in which statistical
mechanics bridges quantum mechanics and classical mechanics in the thermodynamic limit.  By
considering an ensemble of quantum mechanical systems, classical, macroscopic properties—
properties which can be measured and observed—can be predicted.

2.3.1 Ensembles in Phase Space
The pillars of statistical mechanics rest on the analysis of systems in phase (or state) space.
Classical mechanics introduced the notion of phase space through the Hamiltonian dynamics,
where, for example, a coordinate and its canonically conjugate momentum form the axes of a
two-dimensional phase space for a single degree-of-freedom point-particle.  A point in phase
space fully characterizes the position and momentum of the particle—the complete state of the
system—at each moment in time.  As the system evolves, the point will traverse the regions of
phase space to which it has access.

Statistical mechanics considers systems composed of N equivalent constituents, where N is on
the order of 1023.  Examples of such systems are gases, where the constituents are molecules, or
solids, where the constituents are atoms in a lattice.  If these atoms or molecules have three-
degrees of freedom, then phase space become 6N-dimensional to account for a coordinate and
momentum for each degree of freedom for each particle.  If the exact location of the point in
phase space is known, then the microstate of the system is specified.  However, many
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microstates underlie the same macrostate—the manifestly observable physical state of the
system.

Take for example the simple case of a harmonic oscillator in one-dimension.  Given the system
has a certain energy E, the Hamiltonian is a constant for all time.  The phase space trajectory for
this system, pictured in Figure 2.1, is an ellipse.  At any moment in time, the harmonic oscillator
is macroscopically characterized as occupying the same volume, containing the same number of
particles, and having the same energy, even though its exact location in phase space—the
microstate—may be different.

px

x

E

Figure 2.1:  The phase space trajectory of a system is the portion of phase space to which the system has
access.  In the case of a simple harmonic oscillator, the phase space trajectory is an ellipse.

In large systems with 3N degrees of freedom, such degeneracy also exists.  To address this issue,
the notion of a phase density function and ensemble are introduced.  Rather than considering a
single point which traverses all accessible microstates of phase space, consider an ensemble of
systems—infinitely many of them—each occupying a microstate of the system as in Figure 2.2.
Rather than having a single point which traverses phase space in time, this phase density
function, ρ(p,q,t), now represents a distribution of microstates in phase space. The expression
ρ(p,q,t)dpdq is the number of microstates in a volume dpdq at (p,q,t).  Ultimately, there is an
elemental phase space volume size set by quantum mechanical uncertainty; intuitively, this
volume is roughly d dq p ≈ ! .

px

x

E

δE
ρ =

1

Ω(E,N,V)

Figure 2.2:  The statistical mechanical approach is to use the phase density function to describe the phase
space properties of a system rather than phase space trajectories.  In the case of the simple harmonic
oscillator, the phase density function is uniform through the portion of phase space to which the oscillator
has access, an ellipse.

Since a representative point in phase space evolves under Hamiltonian dynamics, so must the
phase density,
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{ }d

dt
H

t

ρ
ρ

∂ρ
∂

= +, .

Since members of the ensemble cannot be arbitrarily destroyed or created, the number of
representative points in phase space is conserved, i.e.,

d

dt

ρ
= 0,

which is Liouville’s Theorem.  In the vernacular, Liouville’s Theorem states that the phase
density behaves like an incompressible fluid or a bulging suitcase:  if it is squeezed in one place,
it will spurt in another place.

Ensembles are specified in a myriad of ways by constraining certain macroscopic properties and
relaxing others.  The properties which macroscopically characterize a system are energy,
physical volume, and the number of particles in the system.  Fixing or allowing fluctuations in
these quantities produces different ensembles and provides a means to make contact with
empirically derived thermodynamic relations.

2.3.2 The Microcanonical Ensemble
The microcanonical ensemble is the most restrictive and pedagogical ensemble formulation.
Though its use is limited in physical systems, its formalisms have taken root in fields such as
information theory.  In the microcanonical ensemble, the physical volume and particle number of
the system are fixed, and the energy of the system to be constrained to a small band about a fixed
energy.  Mathematically, the macroscopic state and hence ensemble, is specified by the
parameters (δE,E,V,N), where δE<<E.  This small δE band about E is usually assumed, and is
negligible in calculations given its infinitesimal weight relative to other values.

The previously discussed harmonic oscillator is an example of such a system.  In phase space,
the harmonic oscillator was constrain to exist in only one-dimension of a two-dimensional phase
space—an ellipse in a plane.  To generalize, the phase space picture of an N-particle ensemble
with three-degrees of freedom is a 6N-1 shell in a 6N-dimensional space.  On this shell in phase
space, the phase density is postulated to be evenly distributed and constant.  This postulate of
equal a priori probabilities is the fundamental assumption of statistical mechanics.  It states that
given a macrostate, a system is equally likely to be in any microstate consistent with that
macrostate.  Mathematically, the phase density is

ρ
δ

( , )
( ( , ) )

p q
p q p q

=
−∫

1

H E d d
.

With a probability distribution in hand, calculations for the ensemble average can easily be
calculated as

< >=
∫

∫
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much as any expected value is calculated given a probability distribution.  Systems which are
ergodic are system for which the ensemble average and time-average properties of the system
are the same.  This is the case for almost all conceivable physical systems.

2.3.3 Enumeration of States and Entropy
Given a fixed energy, volume, and particle number of the system, the number of microstates
which are consistent with a specified macrostate can be counted—an enumeration of microstates.
The number of microstates can be counted in different ways.  Since ρ(p,q,t)dpdq is simply the
number of microstates per incremental volume, then its sum over all relevant phase space yields
the total number of microstates.  So, most generally,

Ω Π( , , ) ( , ) ( , , )E V N d d E E V N= = ⋅∫ ρ δp q p q .

where Ω( , , )E V N , is the number of microstates consistent with a specified macrostate, and

Π( , , )E V N  is the number of microstates per incremental energy—the density of microstates as

a function energy.

The number of microstates underlying a specified macrostate determines a degeneracy in the
system.  An example which best illustrates this is a quantized system.  The definition of the
ensemble provides constraints,

N ni
i

= ∑ E ni i
i

= ∑ ε

where the ε i s'  are the different quantized energy levels, and the ni
’s are the number of particles

in ith energy level.  With these constraints, the enumeration of microstates becomes a chore in
combinatorics.  The many combinations which provide the same microstate imply the existence
of a statistical or mixing entropy.  Statistical entropy and thermodynamic entropy differ by the
factor of a Boltzmann constant.  The thermodynamic entropy calculated from Hamiltonian
dynamics is

S k E V NB= ln ( , , )Ω .

In terms of the phase density, the entropy can be re-expressed as,

[ ]S k d dB= − ∫ ρ ρ( , ) ln ( , )p q p q p q .

Notice that on any constant energy surface in phase space, entropy is maximized.

Empirically, thermodynamics requires entropy maximization for a system in equilibrium.  With a
normalization constraint placed on the phase density,

ρ( , )p q p q∫ d d = 1 (2.3.1)
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entropy can be maximized by the method of Lagrange multipliers:  the normalization condition
constrains the maximization of entropy.  The result is a phase density function for the ensemble
that confirms the postulate of equal a priori probability.

2.3.4 The Canonical Ensemble and The Method of Lagrange Multipliers
The microcanonical ensemble corresponds to a physically isolated and closed system—isolated
in the sense that no energy exchange is allowed, and closed in the sense that no particle flux in or
out of the system is allowed.  Though analysis is made simple by these provisions, the physical
situation seldom occurs.  Realistically, physical systems under experimental consideration are at
thermal equilibrium with a heat bath or reservoir—an infinite sink and source of energy—like its
environment.  Rather than possessing a fixed energy, such systems possess a fixed temperature,
an experimentally accessible observable.  Exchanges with the heat bath to maintain a constant
temperature cause the energy of the system to fluctuate, making all possible values of energy
accessible to the system.

To compensate for this relaxed condition in the construction of an ensemble, the addition of a
second constraint to the Lagrange multiplier maximization of entropy is made.  Though the
system energy fluctuates, it makes sense that a system in equilibrium possesses a mean energy,
the phase average of the Hamiltonian,

< >= ∫H H d d( , ) ( , )p q p q p qρ , (2.3.2)

<H>  is a constant.  Combined with Equation (2.3.2), the method of Lagrange multipliers can be
employed to maximize entropy and yield a phase density for the ensemble,

( )[ ]δ α ρ α ρ ρ ρ0 0( , , ( , ( , ( , d dp q p q p q p q p q p q) + H( ) ) - k ) )E B∫ =ln .

By taking the variation under the integral,

( )( )α α ρ δρ0 0+ − − =∫ E B BH k k d d( , ) ln ( , ) ( , )p q p q p q q p .

To satisfy the equation generally, the integrand can be chosen to be zero.  Since the variation of
ρ(p,q) is arbitrary,

( )α α ρ0 0+ − − =E B BH k k( , ) ln ( , )p q p q (2.3.3)

is chosen to satisfy the maximization condition.  The phase density takes the form

ρ
α α

( , ) exp ( , )p q p q= + −










0 1
k k

H
B

E

B

,

To determine the Lagrange multipliers, a0
 and aE

, the constraint equations are used to first find a
relation between the two.  En route, a means to sum over the microstates is encountered.  The
substitution of the normalization condition produces the intermediate expression,
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e e d dk k
H

B

E

B

α α0 1

1
−









∫ =
( , )p q

p q .

The canonical partition function is defined to be

Z V N e d d eE
k

H
k

E

B B( , , )
( , )

α
α α

≡ =∫
−







p q

p q
1 0

.

As a sum over microstates, the partition function serves as a normalization factor for calculations
such as those used to determine expected values for macroscopic properties, since energy, in the
canonical ensemble, fluctuates.

The use of the energy constraint is made convenient by multiplying Equation (2.3.3) by the
phase density and integrating over phase space.   By using the energy constraint, the definition of
entropy and the newly defined partition function, Equation (2.3.3) becomes,

< > + − =H
S k

Z V N
E

B

E
Eα α

αln[ ( , , )] 0,

which has an uncanny resemblance to the thermodynamic relation for Helmholtz free-energy,

F U ST= − ,

a thermodynamic expression which describes closed systems in thermal contact with their
environment.

Since both expressions must agree with each other, a correspondence is made:

F k T Z T V NB= − ln[ ( , , )] < >=H U
1

α E

T= − .

The phase space averaged energy is actually the internal energy of the system.  The minimal
free-energy corresponds to the most likely state.  Again, contact is made between the
microscopic dynamics which underlie macroscopic properties.

A return to the phase space representation finds the canonical distribution function or Boltzmann
distribution,

ρ ρ
β

( , ) ( )
( , , )

( , )

p q
p q

= =
−

E
e

Z T V N

H

, where β =
1

kBT
,

as conventionally noted in thermodynamics.  The appearance of the partition function is
comforting:  the probability distribution is properly normalized.  As the construction of the
microcanonical ensemble yielded a uniform distribution of accessible microstates in an energy
shell, the construction of the canonical ensemble produces a very peaked phase space probability
distribution which falls off exponentially as the energy of the system deviates from the mean.



30

2.3.5 Generalized Ensembles
General ensembles can be characterized in a fashion similar to that used to characterize the
canonical ensemble.  With each ensemble, connections to thermodynamics require the
construction of a partition function and contact with a generalized potential.

The canonical ensemble eased the restriction of fixed energy required by the microcanonical
ensemble.  Physically, this meant the system went from being thermally isolated to being in
contact with a thermal environment.  The corresponding change in the characterization of
ensembles replaced fixed energy with a fixed temperature, a physical property which resulted
from a Lagrange multiplier.  The phase space distribution could now be characterized as function
of energy.  The system, however, remained closed; the system could not change particle number.
The construction of the grand canonical ensemble loosens this constraint.

The macrostate of a grand canonical ensemble allows the particle number, N, to fluctuate—
particles can now flow in and out of the volume.  Physically, such a system might be one
separated from its environment by a diffusive membrane.  With the fluctuation of particle
number, the conception of phase space changes dramatically.  In the canonical ensemble, when
the constraint on fixed energy was relaxed, the range of accessible state spanned all of a 6N-
dimensional phase space.  Now, with fluctuations in particle number, phase space becomes a
collection of phase spaces; as N fluctuates, so does the dimensionality of the corresponding
phase space.  A photo album of phase spaces with a snapshot for each dimensional phase space
comes to mind.  The existence of each snapshot is weighted by some distribution.  Again, in
equilibrium, an average particle number must exist over the collection of phase spaces,

< >= ∫∑
=

∞

N N d d
N

ρ( , )p q q p
0

,

where the summation indexes each phase space snapshot.

The normalization condition and the mean energy condition are equivalently altered,

ρ( , )p q q pd d
N

∫∑
=

∞

=
0

1

< >= ∫∑
=

∞

H H d d
N

( , ) ( , )p q p q q pρ
0

.

Again, the boldface coordinate and momentum are defined to represent all dimensions of phase
space.  In this case, they change as dimension of phase space changes.  The maximization of
entropy using these constraints yields the grand canonical partition function,

Z T V e e d d e Z T V NG
N H

N

N

N

( , , ) ( , , )( , )µ βµ β βµ≡ =−

=

∞

=

∞

∫∑ ∑p q p q
0 0

(2.3.4).

Identification with the thermodynamic expression for open, non-isolated systems, the grand
potential,
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* = − −U TS Nµ ,

produces the microscopic-macroscopic correspondence,

[ ]*( , , ) ln ( , , )T V k T Z T VB Gµ µ= − .

The associated phase density is

ρ ρ
µ

β βµ

( , ) ( )
( , , )

( , )

p q
p q

= =
− +

E,N
e

Z T V

H N

G

,

where, again, the correct partition function appears as normalization.

A mathematical note of interest:  the grand canonical partition function is a discrete Fourier
transform of the canonical partition function, Equation (2.3.4).  The sum is over the denumerable
quantity of particle number and associated quanta of chemical potential.  The canonical partition
function is, itself, a Fourier transform of the microcanonical partition function, which is constant
by postulate.  The variables of exchange are the non-denumerable quantities of energy and
temperature.  If the Lagrange multiplier method is applied to construct an ensemble where
energy and volume are allowed to fluctuate, the so-called T-p ensemble (the allowance of
mechanical variation at constant pressure), the associated partition function, Zp(T,p,N), would be
the Fourier transform of the canonical partition function, where the variables of exchange are the
non-denumerable quantities of pressure and volume.

These ensemble formulations form the foundation of equilibrium statistical mechanics. Applied
appropriately, physical processes of aggregate systems can be described with exquisite precision
in the thermodynamic limit, where

N → ∞ , V → ∞ , and 
N

V
→ constant.
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3 THE PROBLEM OF MAGNETIC RESONANCE
Magnetic resonance is a powerful tool which has found a home in disciplines as divergent as
medicine and geology, and now includes electrical engineering and computer science.  The
problem of magnetic resonance originated in the attempt to understand the quantum mechanical
nature of the universe, and led to the discovery of the quantum mechanical spin.  Practically,
magnetic resonance has been used by chemists to determine complex chemical structures, like
proteins; by geologists to determine the chemical composition of unknown substances; and by
physicians to provide images for clinical diagnosis and treatment.

Pedagogically, the problem of magnetic resonance is rich with physics.  Magnetic resonance
provides a means to teach quantum, statistical, and classical mechanics, and to forge connections
between the three.  It also serves as an interesting, yet rudimentary introduction to experiment,
incorporating knowledge of introductory electromagnetism and fundamental circuit design to
observe behavior predicted by theory.

3.1 Spin
Early in the development of quantum mechanics, physicists used atoms as model quantum
mechanical systems.  In their analysis of atomic spectra, physicists were pleased to find quantum
energy states, but were dismayed by the presence of multiplet structures (splitting of energy
levels) which arose due to the presence of magnetic fields—what is termed the Zeeman effect.
Physicists had observed similar spectral structures caused by the orbital angular momentum of
electrons about the nucleus.  To account for Zeeman effect, Uhlenbeck and Goudsmit postulated
a second source of angular momentum—spin angular momentum—attributed to the electron
spinning about its axis.  Experiments performed by Stern and Gerlach confirmed the existence of
spin as postulated by Uhlenbeck and Goudsmit.  In time, the confluence of quantum mechanics
and special relatively would yield the theoretical rationale for the existence of spin.

Spin exists in a reduced physical dimensional space and takes on quantized states when
measured.  Particles may possess half-integer spin (fermions) or integer spin (bosons); both can
be observed in magnetic resonance spectra.

NMR specifically refers to the interrogation and manipulation of proton spins.  Protons are spin-
½ particles, which is to say they are two-state systems in which the spin can only be observed
either aligned or anti-aligned with the reference static magnetic field. These form the basis of
any possible wave function which describes a two-state system,

Ψ = ↓ + ↑↓ ↑c c ,

where c c↓ ↑, are complex numbers.  The normalization condition required of wave functions

further simplifies analysis by reducing the Hilbert space of the two-state system to the surface of
a sphere.  Associated with this basis is the spin projection operator,

[ ]� � � �S = + +
1

2
!

& & &
x y zx y zσ σ σ .

By convention, the positive z-direction is that of the static magnetic field.  The spin operator is
composed of operators in each Cartesian direction called Pauli matrices,
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�σ x ≡










0 1

1 0
�σ y ≡

−









0

0

i

i
�σ z ≡ −











1 0

0 1
,

and has a coefficient corresponding to a quanta of spin angular momentum.  Though the Pauli
matrices appear arbitrary, their construction follows quite simply from the discussion of quantum
mechanical projection operators.

Generically, the spin operator is

� � � �S S S S= + +& & &
x y zx y z .

The eigenstates of a spin-½  system can be physically described as the spin being aligned or anti-
aligned with a static magnetic field.  Thus, the projection operator in the z-direction must yield
the appropriate eigenvalue for either spin state; the eigenvalue should possess the correct units
and reflect the binary nature of the state, hence

�Sz ↑ = ↑
!

2
�Sz ↓ = − ↓

!

2
⇒ [ ]�Sz = ↑ ↑ − ↓ ↓

!

2
.

In the matrix formalism, the eigenstates for the spin-½ system are defined to be,

↑ =










1

0
↓ =











0

1
,

which, when substituted, yield the previously postulated Pauli matrix in the z-direction.

For �Sx  and �Sy , construction is simplified if their associated eigenstates are first determined in

the established basis.  As a matter of symmetry, if the �Sx  or �Sy  acts on an eigenstate, they must

yield the same eigenvalues as �Sz .  Geometry dictates that the �Sx and �Sy  eigenstates must lie

completely on the x- and y-axis, which can be achieved by the superposition of the basis states.
Thus,

[ ]Ψx = ↑ ± ↓
1

2
,

are the �Sx  eigenstates.  The choice of the plus sign selects the spin state pointed in the positive

x-direction, and the minus sign, the negative x-direction.  An in-plane π 2 rotation turns the �Sx

eigenstates to the y-axis, and generates

[ ]Ψy i= ↑ ± ↓
1

2
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as the eigenstates for �Sy .  The operators, themselves, become,

[ ]�Sx = ↑ ↓ + ↓ ↑
!

2
[ ]�S

i
y = ↓ ↑ − ↑ ↓

!

2
,

which complete the previously stated Pauli matrices.  As operators of observables, the spin
operators are Hermitian.

The commutation properties of spin operators are

[ ]� � �S S i Sijki j k, = ⋅ε ! [ ]� �S ,2
iS = 0.

In the first expression, the value of εijk is unity if the order of the spin operators comply with the

indices.  A factor of negative one is applied to the right-hand side of the equation each time the
order of the operators is exchanged in the equation.  The property of cyclic commutation implies
that the spin operators constitute a Lie group.  More concretely, it points to the fact that each
component of the spin cannot be known simultaneous.  What can be known is indicated by the
second commutation relation:  the magnitude of the spin and any single component of the spin
state can be observed with arbitrary precision.

3.2 Isolated-Spin Dynamics
A spin behaves as a quantum mechanical magnetic moment. The nature of its interactions are
magnetic—a magnetic field is required to observe it, and when observed it is either aligned with
or against a static magnetic field.  In fact, a magnetic moment can be defined from spin,

��
�µ = γ
&
S

where γ is the gyromagnetic ratio of the particular spin (a proton has a different gyromagnetic

ratio than an electron, for example) and �S  is the spin operator.  The associated Hamiltonian is,

� �H B= − ⋅
& *
µ ,

the dot product of the moment and the magnetic field.  In the case of NMR, the magnetic field in
the z-direction is a strong and static, while the transverse (those in the x and y-direction) fields
are oscillatory and relatively weak,

( ) ( )& & & &
B B t B t B= + + + +x y z1x 1y 0cos sinω φ ω φ .

By convention, the static field is referred to at the B0
 field, and the transverse, rotating fields are

called B1
 fields.  If only a z-directed field exists, then the Hamiltonian reduces to

� �H B Sz= −γ 0 ,
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and the time dependence of the wave function, determined through the use of Schrodinger’s
equation, is

Ψ( )t c e c e
i

E
t i

E
t

= ↓ + ↑↓

− −








↑

− −






↓

↓
↑

↑! !
θ θ

,

where c c↓ ↑, are now real numbers, θ θ↓ ↑,  account for the relative phase between eigenstates,

andE E↓ ↑,  are the energy eigenvalues generated by the Hamiltonian.  The parts are now in place

to calculate the expected value of the magnetic moment—what is observed when many
measurements are made on the spin.  Component by component,

µ µx x xS= =Ψ Ψ Ψ Ψ� �γ

µy yS= γ Ψ Ψ�

µz zS= γ Ψ Ψ� ,

where the total moment is

& & & &µ µ µ µ= + +x y zx y z .

Using the general form of the time-dependent wave function and the previously defined spin
operators,

µ θ θx c c
E

t= − +



↑ ↓ ↓ ↑!

!
γ cos

∆

µ θ θy c c
E

t= − +



↑ ↓ ↓ ↑!

!
γ sin

∆

[ ]µz c c= −↑ ↓

!γ
2

2 2 ,

where

∆E E E= −↑ ↓

is the energy required or released during a transition between the spin energy eigenstates.
Experimentally, these levels can be observed through spectra, a recording of the electromagnetic
radiation released or absorbed when a spin makes transitions.  These photons which are absorbed
or emitted have energy quanta related to their wavelength.  Associated with each transition is

∆E
c

= =
!

!
λ

ω0 .

The connection between the energies produces final expressions,
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( )µ θ θ ωx c c t= − +↑ ↓ ↓ ↑!γ cos 0

( )µ θ θ ωy c c t= − +↑ ↓ ↓ ↑!γ sin 0

[ ]µz c c= −↑ ↓

!γ
2

2 2 .

The z-component of the magnetic moment is a constant of motion, while the x- and y-
components evolve in a rotationally at the Larmor frequency,

ω γ0 0= B ,

a resonant frequency parallel and proportional to the static, bias magnetic field.  On average, the
spin precesses about the bias field at the Larmor frequency, a result previously calculated using
classical models.  A quick calculation to predict the time-evolution of the expected value of the
moment using the expression,

[ ] [ ]d

dt i
H

i
Hi

i i

µ
µ µ= =

1 1

! !
Ψ Ψ� , � � , �

produces

d

dt
B

&
& &µ
µ γ= × ,

the torque relation.

With only two effective degrees of freedom, a transformation into a spherical coordinate system
produces a useful interpretation for the behavior of the expected behavior of spins—a vector of
length ½γ!  at a fixed angle from the z-axis, which precesses in the x-y plane, as in Figure 3.1.

This is an interesting result, as the Hilbert space for a single spin is a vector from the origin to
the surface of a unit sphere.

x
y

z
ω

µ
B = B0 ẑ

θ

Figure 3.1.  The vector model developed by Purcell describes the spin dynamics in terms of the evolution
of its expectation value.  The x-, y- and z- axes establish the coordinate system.  The spin magnetic moment
is depicted as the vector µ directed from the origin with a length equal to its magnitude.  The axis of
precession for the spin moment is represented by the vector ω, and represents the component of spin
angular momentum aligned with the bias magnetic field.
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With the intuitive picture of spin reconciled with its quantum mechanical origins, the effects of
transverse fields can taken into account.  The expression for the time-evolution of the spin can be
expressed as

( ) ( )[ ]d

dt
B t B t B

&
& & & &µ
µ γ ω φ ω φ= × + + + +x y z1x 1y 0cos sin .

To account for a static, bias magnetic field and a time-varying excitation field.  To remove the
time-dependence in the excitation field, a coordinate transformation is made from the laboratory
frame to the rotating frame of the spin.  If the frame is chosen to rotate with the z-component of
the excitation frequency, ωz

,

d

dt
Beff

&
& &µ
µ γ= × , ( ) ( )& & & &

B B B Beff = + + −x y z1x 1y 0cos sinφ φ
ω
γ

.

Analysis of the spin in the rotating frame finds the spin precessing about an effective field—the
effect of applying transverse excitation fields is to rotate the spin precession axis in the
laboratory frame.  The addition of B1

 to the Hamiltonian adds a rotation of the precession axis to
the time-evolution of the spin.  The amount the spin precession axis is tilted away from the z-axis
is

θ τ γ τrotate k B, ( ) = 1k .

The application of the B1
 field for a properly chosen time, τ, can produce arbitrary rotations of

the spin precession axis away from the z-axis about either the x- or y-axis.  The amplitude of B1

governs the rate of rotation.

The effect of the B1
 frequency, ω, is evident with the continuous application of the excitation

field at constant amplitude.  If the B1
 field frequency is swept from DC, the axis about which the

spin precesses rotates away from the z-axis.  The spin, following the precession axis, precesses
toward and then away from the z-axis.  When a magnetic moment is aligned with the bias field, it
is in the minimum energy configuration.  When it is anti-aligned, the moment assumes its
maximum energy configuration.  The excursion from alignment with the bias field requires the
absorption of magnetic energy from the excitation field to increase magnetic potential.  As the
spin precesses, it will eventually align itself with the field.  The energy previously acquired in
the excursion from alignment is then emitted.  This is the resonant nature of spin—the absorption
and then emission of energy.  At resonance, when ω = ω0

, the effective field is B1
; the spin will

precess about an axis perpendicular to the z-axis as in Figure 3.2.  As the precession progresses,
the spin passes through maximal and minimal energy configurations—it aligns and anti-aligns
itself with the bias field in each precession period. In spectra, a peak results at the resonant
frequency due to the maximal absorption and emission of energy.
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Figure 3.2:   This progression illustrates the effect of an excitation field when its frequency is increased
from DC to the resonance frequency.  In the rotating frame, on-resonance, a spin on perceives a bias field
in the direction of excitation.

Quantum mechanically, a similar description follows.  The resonant frequency corresponds to
the exact quanta of energy needed for a spin in a lower energy state to be excited to the higher
energy state.  Equivalently, a transition from the higher energy state to the lower energy state is
accompanied by the emission of a photon of the same energy.  Only excitation fields at the
Larmor frequency will supply the correct quanta of energy required for transitions, producing a
spectral peak on resonance.

Berry’s Phase
An interesting failure of the classical picture is illustrated when an excitation field is applied to
cause a 2π rotation.  If the spin is rotated about x-axis 2π radians, in the classical analogy, the
spin returns to the same state it was in prior to the excitation.  The fact of the matter is that spins
are purely quantum mechanical entities which possess an internal degree of freedom called
Berry’s phase.  The 2π rotation performs a parallel transport.  The variables which describe the
external degrees of freedom of the spin have been altered and then returned to their original
values.  However, a change in the internal degree of freedom was incurred—a holonomy was
generated.  A spin is a spinor, a class of entities with certain symmetries which exhibit
holonomy.  In the case of the 2π rotation, a factor of negative one is incurred to the spin state.
To completely return the spin back to its original state, another 2π rotation is required.

3.3 Isolated, Coupled Spin Systems:  Molecules
Liquid state NMR considers spins in molecules in an aqueous solution.  In these liquids,
molecules are free to tumble.  These random motions average out inter-molecular interactions1.
A sample composed of a single molecular species can be considered as an ensemble of non-
interacting molecules.  Each molecule may have more than one free proton spin.  These spins are
coupled through their magnetic interactions with each other.

The most rudimentary spin system is a molecule with two hydrogen atoms in electronically
different environments.  If there were no coupling between the two spins, the Hamiltonian would
simply be the sum of the two spin Hamiltonians.  However, since a spin is like a magnetic
moment, it generates local magnetic field perturbations felt by neighboring spins.  These
magnetic interactions are the nature of spin-spin coupling, and are embodied in the Hamiltonian
as a dipole coupling term,

                                                          
1 See “Homogeneous NMR Spectra in Inhomogeneous Fields,” Vathyam, S., Lee, S., Warren, W.S.,
Science, vol. 272, April 5, 1996, for an interesting violation of this assumption.
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� � � � �H B S B S
J

S SA AZ X XZ
AX

AZ XZ= + + ⋅γ γ
π

0 0

2

!
(3.3.1).

A and X are used to label the two different spin types in a heteronuclear spin system and JAX
 is

the spin-spin coupling constant in units of hertz.  The spin-spin interaction is relatively small,
and its magnitude is independent of the external field strength.  The effects of higher-order spin-
spin interactions are negligible compared to the dipole interaction.  To extend the Hamiltonian to
N coupled spins requires the sum of each independent spin Hamiltonian and a summation over
all possible spin pair interactions.

The quantum mechanical state of a N-spin system is denoted as

a a a aN N1 2 1, ,... ,− ,

where each ai
 represents the binary state of the i-th spin.  The available states for a two-spin

system are

{ }A X, , , , , , , ,= ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ .

Though two of the states appear to be degenerate, the local magnetic environment of each spin
maybe different due to the structure of the molecule.  The result is that a shielded spin may
perceive a weaker bias field than an unshielded spin. The corresponding change in energy-levels
is referred to as the chemical shift.  In practice, measured chemical shifts are used to determine
the structure of the molecule.

Due to the spin-spin coupling, the energy levels must include the contributions from spin
interactions.  Figure 3.3 illustrates the shifts in energy levels due to spin-spin coupling.
The effect on spectra is the manifestation of minor energy shifts due to local perturbations in
magnetic fields induced by spin orientation.

A X A X

ω0,X

ω0,A

ω0,A+ω0,Xω0,A+ω0,X

ω0,X-πJAX

ω0,A-πJAX

Figure 3.3:  To the right is an energy-level diagram for an uncoupled spin system.  The transition between
energy-levels is set by the quanta of energy to flip the chosen spin.  To the left is an energy-level diagram
for a coupled spin system.  The spin-spin interactions introduces shifts in the energy-levels due to the
alterations in local magnetic fields induced by the orientation of neighboring spins.  These energy shifts are
characterized by the contribution of the coupling constant JAX  scaled by the spin orientation in the coupled-
spin Hamiltonian as in Equation (3.3.1).
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3.4 Thermal Spin Ensembles:  Pure & Mixed Ensembles and the Density Matrix
Though understanding the nature of an isolated spin system is useful, isolated spin systems are
difficult to access experimentally.  More often, they are dealt with as ensembles in bulk
materials.  If an ensemble of spin systems are identically prepared and act in unison, then they
constitute what is termed a pure ensemble.  Each system can be described by a single state
vector; their phase space distribution is a single point.  The realization of a pure ensemble is
difficult without a means to completely isolate the spins.  More often, physical ensembles
composed of equivalent individual systems are prepared in different states.  These are referred to
as mixed ensembles.  Canonical and generalized ensembles are mixed ensembles.  To deal with
mixed ensembles, Dirac notation is extended by the density matrix formalism to realize quantum
statistical mechanics.  Quantum statistical mechanics is simply the application of statistical
mechanics to an ensemble of quantum mechanical systems.

The basis of quantum statistical mechanics is the density operator or density matrix, the quantum
mechanical phase space density function, defined as

�ρ ψ ψ≡ ∑ pi i i
i

(3.4.1),

where the general states, ψi , that describe the members of the ensemble are weighted by the

probability, pi
.  Equation (3.4.1) describes a mixed ensemble.  To describe a pure ensemble,

Equation (3.4.1) reduces to

�ρ ψ ψpure i i= ,

since each member of the ensemble is described by a common wave function. As a phase space
density function, the density operator must be normalized.  It must also be Hermitian.  To sum
through phase space, the trace is used.  The trace of a matrix is the sum of its diagonal elements.
The normalization condition is

( )Tr ii
i

�ρ ρ= =∑ 1,

where the ii  indexes through the matrix elements of the density operator.  In this case only the
diagonal elements are indexed.  This operation is equivalent to an integral sum through all of
phase space in classical statistical mechanics, and suggests a method to calculate ensemble
averages,

( )� � �A Tr A= ρ .

In the case of a pure ensemble the normalization condition means,

� �ρ ρpure pure
2 = ⇒ ( )Tr pure

�ρ2 1= ,
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and corresponds to a matrix which has zeroes for all its off-diagonal elements and a single one in
one of diagonal elements.  For a mixed ensemble, the trace of the squared density operator is
always less than one.

As with the classical density function, the density operator evolves under Hamiltonian dynamics
according to Liouville’s equation, and can be used to make connections between microscopic
dynamics and macroscopic observables through the various ensemble formulations.  Phase

space, however, is quantized into elemental volumes of ( )N N! !
3

 to account for quantum
mechanical uncertainty and particle indistinguishability.

In NMR, the spins in a material constitute a canonical ensemble.  They are at thermal
equilibrium with their environment, but do not fluctuate in number.  The quantum mechanical
canonical probability distribution is,

�( )
( , , )

ρ
β

E
e

Z T V Ni

Ei

=
−

, 

where

( )Z T V N e E

j

j, , = −∑ β

is the partition function and Ek
 are the quantum energy levels.  Once the density matrix of

operator is constructed, all the techniques of classical statistical mechanics can be applied to
analyze aggregate quantum mechanical systems.

To describe an ensemble of two-spin systems solvated in liquid requires a density matrix.  The
non-interacting nature of the molecules simplifies the construction of the complete density
matrix since it can be characterized by the tensor product of the density matrices that represent
each spin system.  For a sample with N molecules,

� � � ...� �ρ ρ ρ ρ ρensemble N N= ⊗ ⊗ ⊗−1 2 1 .

However, there is a simpler approach.  Since the sample constitutes a canonical ensemble of two-
spin systems, in equilibrium each energy state is populated according to the canonical
distribution function.  By definition, the complete density matrix is

�ρensemble p p p p= ↑ ↑ ↑ ↑ + ↓ ↑ ↓ ↑ + ↑ ↓ ↑ ↓ + ↓ ↓ ↓ ↓↑↑ ↓↑ ↑↓ ↓↓

=



















↑↑

↓↑

↑↓

↓↓

p

p

p

p

0 0 0

0 0 0

0 0 0

0 0 0

,

where the pij ’s are canonical distribution function for each state divided by the lowest energy
state distribution as reference, i.e.,
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p↑↑ = 1

p e E E

↓↑
− −= ↓↑ ↑↑β( )

p e E E

↑↓
− −= ↑↓ ↑↑β( )

p e E E

↓↓
− −= ↓↓ ↑↑β( )

.

From the density matrix, all physical behavior can be predicted by applying rotation operators to
manipulate spins, evolution operators to perform free evolution, or projectors to observe physical
properties.

A quick examination of a density matrix provides insight into the ensemble.  The diagonal
elements are the relative populations of the energy levels.  The density matrix is symmetric:  the
elements below the diagonal are a reflection of the elements above the diagonal—the matrix is
Hermitian.  The off-diagonal elements indicate quantum coherences—couplings between state
transitions.

3.5 Mathematical Rotation, Evolution, and Observation
Fundamentally, NMR techniques involve the manipulation, evolution and observation of spins.
Physically, transverse radio-frequency (RF) magnetic fields are used to excite or manipulate
spins.  Excitations consist of an arbitrary angle rotations of spins from the bias field axis.
Evolution to uncover spin-spin couplings and other behavior require evolution time to allow
those mechanisms to unfold after a spin has been rotated.  The spin response can be measured as
a changing bulk magnetization.  These actions all have corresponding mathematical operators.

In the density matrix formalism, the application of an operator is performed by applying the
density matrix to the adjoint of the operator, and then pre-applying the operator, itself, to the
density matrix.  For an arbitrary rotation of the spins in a two-spin system, the matrix operators
are
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The rotation matrices generate arbitrary rotations of spin A and X about the x- and y-axis.  The
non-zero quadrant of each matrix constitutes a rotation operator for a single spin.  Rotation
operators for a N-spin systems can be constructed by taking tensor products of the spin rotation
operators.
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The free evolution of a density operator is performed by applying the density operator to the
adjoint of unitary evolution operator and then pre-applying the unitary evolution operator to the
density matrix.  The time of evolution is chosen as a scale factor of the Hamiltonian in the
exponent of the unitary evolution operator.

The bulk magnetization is the observed quantity of interest in NMR.  It is the vector sum of the
spin defined magnetic moments,

& &
M i

i

= ∑ µ .

The calculation can be performed using the density matrix, but a more intuitive argument exists.
Since proton spins are binary in nature, at thermal equilibrium they are either aligned or anti-
aligned with the magnetic bias field.  The bulk magnetization is due to the small population
difference between spin in the two states.  The population difference, again, is set by the
Boltzmann distribution.

& & &
M N N

0
= +↑ ↑ ↓ ↓µ µ

( )= −↑ ↓N N
&
µ

( )( )( )= −↓ ↑tanh �β γE E N Sz

( )( )= tanh �β∆ γE N Sz

& !
M

N B

k T
Mz

B
0

2 2
0

04
≈ ≡

γ
.

M0
 is the equilibrium magnetization for a spin-½  system, oriented in the direction of the applied

bias field.  The bulk magnetization is an intrinsic property of the material.  The chemical
structure of different molecules shield proton spins differently.  Since proton spins are
paramagnetic by nature, they want to align themselves with the bias field.  The material
characteristic of magnetic susceptibility is defined as,

χ
γ µ

0

2 2
0

4
≡ =

M

H

N

k TB

!
,

where M is the observed magnetization and H is the applied field strength (B is the magnetic
field flux).

3.6 Spin-Lattice Relaxation, Spin-Spin Relaxation, Saturation and the Bloch Equations
The analysis of single spin systems was performed under the assumption of thermal isolation.  If
a spin was excited, there is no mechanism for the system to return to a ground state.  In the case
of a spin ensemble in contact with a thermal reservoir, spins can exchange energy with the
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reservoir to return to a lower energy state.  Any excitation introduced will eventually decay due
to heat transfer between the spin and its environment.

The are two mechanisms by which the bulk magnetization can relax.  The first, spin-lattice (or
longitudinal) relaxation, is a true thermodynamic relaxation mechanism, which effects the z-
component (or longitudinal component) of magnetization.  After a spin ensemble comes to
equilibrium with a bias magnetic field, a macroscopic bulk magnetization appears due to
population difference in the two energy states.  This population difference is

n t N t N t( ) ( ) ( )≡ −↑ ↓ .

The total number of spins,

N N N≡ +↑ ↓ ,

is constant in a canonical ensemble (i.e., a closed system).  The members of the ensemble can
exchange energy with the environment (or lattice) or with an external energy source, such as an
applied B1

 field.  The absorption and emission necessitate energy-state populations to re-organize
with certain transition probabilities.  The change in populations of each energy state can be given
by the two-state master equation,

( ) ( )dN

dt
N W w N W w↑

↓ ↓−↑ ↓−↑ ↑ ↑−↓ ↑−↓= + − + (3.6.1a)

( ) ( )dN

dt
N W w N W w↓

↑ ↑−↓ ↑−↓ ↓ ↓−↑ ↓−↑= + − + , (3.6.1b)

where Wm-n
 denotes the probability for transition per second from state m to state n due to

interactions with the lattice and wm-n is the transition probability due to an external injection of
excitation energy.  In general, the master equation describes the time evolution of the occupation
of a certain state by summing the difference between the in-flux and out-flux of members from a
given state over all other possible states.

The transition probabilities due to energy exchanges with an external source depend on the
frequency of the excitation since the system is resonant.  The wm-n

’s are also symmetric.  The
calculation of the transition probabilities from quantum mechanics yields the wave function,

w m H n m H nm n− ∝ � � * .

Since the Hamiltonian is Hermitian, the quantity on the right-hand side is real and remains the
same regardless of the direction of the transition, i.e.,

m H n n H m� � *= .

So,

( )w w wm n n m− −= = ω .
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The transition probabilities for interactions with the lattice, however, are not symmetric.  Since
the lattice is considered a body of infinite heat capacity, it is assumed to always be in a state of
internal equilibrium.  The master equation for the lattice, then, has no time dependence, and the
transition probabilities, in the absence of external excitation, are related by the ratio of relative
populations in the two states given by the Boltzmann distribution,

W

W

N

N
e↑−↓

↓−↑

↓

↑

= = β ω! 0 .

The same transition probabilities hold for the spin ensemble since the lattice and the spin
ensemble form an isolated system.  Since energy must be conserved within an isolated system,
the spin ensemble can only interact with the lattice at a rate set by the transition probabilities of
the lattice.

To calculate the time evolution of the population difference, n, expressions forN↑  and N↓  are

derived from expressions for N and n and substituted into either Equation (3.6.1a) or Equation
(3.6.1b).  The result is

( )dn

dt
W W N

W W

W W
n wn= +

−
+

−












−↑−↓ ↓−↑
↓−↑ ↑−↓

↑−↓ ↓−↑

2 , (3.6.2)

which is suggestive of first-order decay.  Intuitively, the term on the right-hand side from which
the population difference is subtracted is the equilibrium population difference.  Confirmation
comes through the realization that in equilibrium the left-hand side of the master equation is
zero.  A gentle massage of the equilibrium master equations proves intuition to be truth.  And,
the convenient chose of

1

1T
W W≡ +↑−↓ ↓−↑ ,

where T1
 is the characteristic decay time of any deviation from equilibrium, yields a solution to

Equation (3.6.2) of

n t n e
t

T( ) = −










−

0 1 1 ,

in the absence of a external excitation.  The natural tendency of the ensemble is to remain in
equilibrium.

In the presence of external excitation on resonance, the interactions with the lattice become
comparatively small, and

n t n e wt( ) = −
0

2 .
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In the presence of prolonged external on-resonance excitation, the population difference will
eventually decay away in a process called saturation.  A spin ensemble has a finite heat
capacity—it can only absorb a finite amount of energy.  As the “spin temperature” goes to
infinity, the spin ensemble must assume an increasing state of disorder, characterized by an equal
occupation of energy-states.  Since the transition probability of the spins are equal in both
directions, the net flux of transitions between states is zero, and the population difference
remains zero for the duration of the applied excitation.  After the excitation is stopped, spin
interactions with the lattice will restore equilibrium occupations of the spin energy-levels.

The connection between these population differences to physical observables is natural.  Since
the z-component of the bulk magnetization of a spin ensemble is the population difference scaled
by the magnitude of a single spin magnetic moment, then the bulk magnetization in the z-
direction possesses the same tendency to return to an equilibrium state,

dM

dt

M M

T
Z z=

−0

1

.

The second relaxation mechanism effects the transverse component of magnetization.  This so-
called spin-spin relaxation, does not involve heat exchange with an external heat reservoir and is
reversible.  The nature of spin-spin relaxation is related to the manner in which bulk
magnetization is observed.  Bulk magnetization is a vector sum of individual spin magnetic
moments.  For equal numbers of spin moments pointed opposite each other, the net
magnetization is zero.   Spin-spin relaxation is due to the effect of vector cancellation of
magnetization.

If a magnetic field rotates an ensemble of spins into the transverse plane and is then removed, the
spins will precess in the transverse plane for the characteristic time T1

 until the ensemble returns
to equilibrium.  The net transverse magnetization, however, will degrade much faster.  Since the
spins precess about the bias magnetic field with a precession frequency proportional to their
perceived bias field strength, even minute inhomogeneities in bias fields will produce varying
precession frequencies.  Similarly, spin interactions within a spin system will slightly alter
perceived magnetic environments.  After the initial tip, the spins are in-phase:  they begin by
being rotated into the transverse plane together.  As they begin to precess, these minor deviations
in perceived magnetic fields cause some spins to precess faster than others.  The spins lose phase
coherence.  Eventually, the spins completely fan out, so although the spin moments still precess
in the transverse plane, the bulk magnetization observed as a vector sum of those individual spin
moments is zero.

The relations for the decay of the transverse components of bulk magnetization are

dM

dt

M

T
x x= −

2

dM

dt

M

T
y y= −

2

.

The characteristic decay time is denoted as T2
.  Since the mechanism for spin-spin relaxation is

loss of phase coherence, the characteristic time for decay is generally much shorter than T1
.  The
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symmetry of the problem demands that T2
 is same decay constant for both the x- and y-

components of magnetization.

With the effects of relaxation, the equations of motion for bulk magnetization due to spins are

( )dM

dt
M B T M M

&
& & & & &

= × − −−γ 1
0 ,

where
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2
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.

These equations of motion for quantum mechanical spins in bulk were first introduced by Felix
Bloch in 1947.  They are referred to as the Bloch equations.  They are the same as the equations
derived in the opening from classical considerations of spin.

The sinusoidal decay signal measured due to spin-spin relaxation modulated by spin precession
is called a free induction decay (FID).  It is simply the sinusoidal decay of a resonant structure
and is depicted in Figure 3.4.  This decay is reversible.
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Figure 3.4:  The FID oscillates at the Larmor frequency and decays with a characteristic time-constant T2.
The decay is due to loss of phase coherence among the spins in the sample.

The reversal of spin-spin relaxation observed in a FID requires a second injection of energy to
restore phase coherence to the spins.  Erwin Hahn first developed a technique to observe the
reversal of spin-spin relaxation.  After the application of a π

2 -rotation pulse about either the x-
or y-axis to rotate the bulk magnetization into the transverse plane, he waited a time, τ, and
applied a second π

2 -pulse.  What he observed was the reappearance of the FID—a “spin echo.”
A more illustrative example was later developed by Carr based on the vector model proposed by
Purcell.  The technique is called refocusing.  Rather than applying a second π

2 -pulse, Carr

applied a π-pulse.  The application of a π-pulse after the π 2 -pulse effectively reversed the time-
evolution of the spins.  The wait time, τ, after the first pulse allows the spins to lose phase
coherence.  The application of a π-pulse flips them in the transverse plane—they mirror their
original positions across the axis of excitation.  Now, the spins with the slower precession
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frequencies are ahead of the spins with faster precession frequencies.  As the spins with the faster
precession frequencies catch up, all the spins eventual re-align.  They re-establish phase
coherence, and result in a maximum transverse magnetization before losing phase coherence
again.

Excitations to manipulate spins are referred to as pulse sequences.  In the case of the spin echo
experiments, the pulse sequence consisted of two pulses, both at the resonant frequency,
differing in duration.  More complex pulse sequences have been designed to extract even more
information from spins regarding their environment.  The length of a pulse sequence is
ultimately constrained by the T1

 coherence time of the spins.
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4 NMR QUANTUM COMPUTATION
4.1 Classical Computation
Modern digital computation consists of bits and operations on bits.  A bit is a binary value—
either 1 or 0, positive or negative, present or absent.  An arbitrary number can be represented by
a sequence of bits.  Operations can be performed on a single bit or on many bits.  These
operations are implemented as logic gates.  Any function can be generated from a single-bit
operation called NOT and a two-bit operation call XOR.  Figure 4.1 is schematic drawing of the
NOT and XOR operations with their associated truth tables.  Algorithms and arithmetic operations
such as addition can be implemented from a network of logical gates.

A S

A

B

SNOT

A     B     S

0      0      0
0      1      1
1      0      1
1      1      0

A   S
0    1
1    0

XOR

Figure 4.1:  The schematic representation and truth tables for the NOT and XOR logical operations

The requirements for general computation are the ability to set arbitrary initial values, a means to
operate on those values, a means to preserve state—to retain intermediate answers for
consecutive operations, and the ability to measure or read the final result.  A practical
implementation also requires a mechanism for error correction.  With these capabilities, a
computer can produce an answer for any computable problem over a finite period of time.

As with all processes, computation must obey physical laws.  Computation is information
processing, and the representation and manipulation of information has a physical reality.  Be it
electrical charge coursing through a network of transistors, a bundle of photons traversing an
optic fiber, or beads sliding back and forth on a rod, the physical manifestation of a bit must
obey the laws of physics.  Equivalently, there is also a physical consequence to the act of
computation.  Energy is required to manipulate the physical bits; there are thermodynamic
repercussions to the creation and annihilation of bits.  Computation is a physical process which
evolves in time in a prescribed manner, by a program.  This perspective is binding, yet revealing:
computation has physical limits, however traditional computation deals exclusively with
classical behaviors and limits.  The world is truly quantum mechanical.  What if the
computations were performed in a manner which took advantage of purely quantum mechanical
interactions like entanglement and interference?  How could these physical interactions enhance
computation?

4.2 Quantum Computation
For decades, the notion of quantum computation has been of great theoretical interest.  From the
perspective of the physicist, a quantum computer is invaluable as a laboratory in which to study
quantum mechanics.  For a traditional computer to simulate a quantum system requires
exponential time to account for the exponential combination of states in which a quantum
mechanical system exist.  A quantum computer, however, exists in these superposition of states,
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and can thus simulate quantum mechanical systems in linear time.  Also, the physical reality of
setting initial conditions to prepare for a computation corresponds to placing a quantum
mechanical system in a state that maybe probabilistically unlikely.  There have been quantum
states which have been postulated by never observed.  Such a system promises to provide to
means to not only observe these states, but to also create them.

The path to a quantum computer parallels that of a classical computer with a couple differences.
A quantum computer needs to represent values in a form amenable to information processing—it
needs a means to represent bits.  These bits must exhibit quantum mechanical behavior;
candidate quantum bits, or qubits, are any quantum mechanical two-state systems like spins and
photons.  Because these bits are quantum mechanical, they must obey Hamiltonian dynamics and
evolve unitarily.  This is again a departure from classical notions of computation where
dissipation prevents reversible computations.  For example, if a computation adds four and four,
the solution is eight.  To perform the reverse computation is impossible.  Given an eight, it is not
possible to determine whether the addends were four and four, three and five, six and two or one
and seven. Information is destroyed and energy dissipated.  Since dissipative processes are
absent in microscopic, Hamiltonian dynamics, all quantum computations are reversible.

Quantum logic gates must be constructed with the properties of unitarity and reversibility.  In
analogy to the NOT and XOR gates, any computation can be realized through a network of
controlled-not (CNOT) and single-bit operations.  A schematic and truth table for a CNOT gate is
presented in Figure 4.2.  A single-bit operation consists of an operator which performs an
arbitrary rotation on a state in Hilbert space.  The effect of performing a single-bit operation may
be a NOT gate or a ROOT-NOT gate:  a single-bit operation can be used to inject an arbitrary phase
shift between the basis states available to the system.  With these rudiments, as with the NOT and
XOR in classical computation, any desired function can be generated.

Ain

Bin

Aout

Bout

|AinBin> |AoutBout>

|00> |00>
|01> |01>
|10> |11>
|11> |10>

Figure 4.2:  The CNOT is essentially a conditional-not performed with an entangled pair of qubits.  Bin is
inverted if Ain is one; if Ain is zero, Bin is untouched. Aout is always the same as Ain.

The fragility and power of quantum computation comes from the quantum mechanical behavior
of its bits.  Quantum computers can explore an exponentially larger computational space than its
classical counterpart.  A classical N-bit register holds a single value.  A quantum mechanical N-
bit register can hold 2N values simultaneously due to the superposition properties of quantum
mechanical systems.  If a computation is cast in the form of a finite-state machine (FSM), rather
than occupying a single state of the FSM, a quantum computer can occupy all states of the FSM
simultaneously.  In this sense, a  quantum computer is a massively parallel computation device.
However, in order to maintain a coherent superposition of states, a quantum computer cannot be
disturbed.  That is the paradox:  to effect a computation requires the initialization, manipulation,
and measurement of a computer’s information.  These are all actions which disturb the system.
In quantum mechanics, the complexity of being in a superposition of states is lost as a system is
disturbed and assumes an eigenstate.  A quantum computer in thermal contact with its
environment is already in jeopardy as thermal exchanges prevent the existence of a pure
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ensemble, a possible initialization value.  Early attempts to realize quantum computers used
atom traps and quantum cavities to isolate and shelter atoms and photons as qubits.  These
systems were large, super-cooled experiments of greater labor and precision.  The achievement
of one- and two-bit computations were heroic, but effort required to realize those early successes
suggested a dead-end on the road to practical quantum computations.

4.3 Molecules as Computers:  NMR Quantum Computation
The breakthrough made by Neil Gershenfeld and Isaac Chuang was that molecules in a
conventional liquid state system were perfect candidate quantum computers.  This is unusual.
NMR samples are thermal, bulk materials.  All previous attempts to realize quantum
computation were performed on quantum mechanical systems that were isolated, and composed
of individual quantum mechanical entities.  How could the quantum mechanical constituents of a
thermal, bulk material possibly avoid the problem of maintaining a coherent superposition if
individual quantum mechanical entities in an isolated, closed system could barely do so?

Buried in the nomenclature and practice of NMR is the answer.  Liquid state NMR samples have
demonstrated extremely long coherence times.  They can remain in a coherent superposition of
states for seconds, and, with extreme effort, for minutes.  The NMR term for decoherence time is
T1

, the spin-lattice relaxation time, the time is takes for spins to relax to thermal equilibrium.
This suggests the molecules in a liquid state sample are essentially thermally isolated for a fair
period of time.  The assumption that rapid tumbling averages out intermolecular interactions
further isolates individual molecules from each other.

Spins in NMR samples can also be manipulated without forcing them into eigenstates, i.e.,
unnecessarily disturbing their coherent superposition of states.  The simple spin echo pulse
sequence is proof:  the spins in the system are twice manipulated with pulses—first a π

2 -pulse
and then a π pulse.  The state of the spins can be observed during the pulse sequence—an FID
appears after the π

2 -pulse, and then a spin echo appears a short time after the application of the
π pulse.  All the while, the spins maintain a coherent superposition of states; T1

  has not expired.
The spins have been manipulated and observed without being unduly disrupted.  The reason for
this apparent imperviousness is that NMR samples contains roughly 1023 identical molecules.
Any thermal interactions with the environment or intentional measurements only weakly perturb
the system.  Only some members of the ensemble, those effected by the decoherence
interactions, are lost.  This, in part, explains why T1

 is a decay process, and not a sharp defining
moment when the entire ensemble loses coherence.

The tools of NMR are the tools of NMR quantum computation (NMRQC).  The systems of
interest are the spin systems of individual molecules, and the means to manipulate and
interrogate—apply algorithms and read-out results—are simply the pulse sequences and
observed magnetization of the system.  NMR is tailor-made for quantum computation.

Since an NMR sample is in thermal equilibrium, to establish initial condition, manipulations
must begin with the density matrix in thermal equilibrium.  From the equilibrium density matrix
is distilled a pure ensemble, which may serve as an initial state for a quantum computer.  In
equilibrium,
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for a two-spin system.  The density matrix can be separated into an identity matrix and a
deviation matrix, which constitutes the portion of the sample that can actually be manipulated
and observed,
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where αi is !ω i
kT2 .  The identity matrix portion of the density matrix is unaffected by unitary

evolution.  Since the identity matrix physically implies that all states of the system are equally
populated, any rotation operation simply shifts the spin populations into different states, which
are again equally populated, leaving the identity matrix unaltered.  Any interesting behavior,
then, resides in the deviation density matrix,
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Though there are many competing techniques to manufacture a pure state, the most illustrative is
the temporal labeling technique developed by Manny Knill at Los Alamos National Laboratories.
Beginning with the deviation density matrix, the initial equilibrium populations are generically
designated as a, b, c and d,
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.

By applying pulse sequences, the equilibrium populations of the deviation density matrix can be
permuted and then the results measured over time,
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By summing the permuted density matrices,
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which is essentially a pure ensemble since,
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Again, the identity matrix is not effected by manipulations and is an absent during observation.
The second term of the sum is effectively a pure ensemble—it behaves exactly like a pure
ensemble when manipulated and observed.  Convention required that a pure ensemble be
generated prior to the execution of quantum computation.  The temporal labeling method not
only demonstrates how to create an effective pure ensemble from a thermal ensemble, but also
suggests the incorporation of the ensemble purification process into quantum computational
algorithms, as opposed to performing the purification explicitly prior to computation.  Though
the temporal labeling technique is illustrative, an increase in the size of the spin system is
accompanied by a linear loss in signal strength.  Logical labeling techniques developed by Neil
Gershenfeld and Isaac Chuang promise to overcome this decrease in signal strength.

To actually implement quantum computation in NMR systems requires two rudiments, single-bit
operations and a CNOT gate, to realize any computable function.  A single-bit operation in NMR
is simple.  Any rotation suffices.  To realize a NOT gate, for example, simply requires the
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application of a π-pulse to invert the spin.  A ROOT-NOT gate is simply a π 2  rotation.  In fact an
angle rotation can be implemented to realize any desired phase shift.  The more involved task is
the creation of a CNOT gate between two coupled bits.  The pulse sequence as developed by
Gershenfeld and Chuang, given by R

yA
(-90) R

zB
(-90) R

zA
(-90) R

zAB
(180) R

yA
(90), provides this

necessary operations up to an overall phase factor, which is easily removed.  The associated
rotation matrix, when calculated, yields

�C iAB = −



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

This pulse sequence essential performs a population transfer with corrective pulses to insure
phase coherence between the non-zero elements of the matrix.

With the elements of quantum computation in hand, the steps to follow are dual.  High-resolution
NMR spectrometers already exist.  Experiments to demonstrate the validity of these techniques
have been performed and the testing of quantum algorithms is underway.  The second path is to
realize NMR quantum computation in a desktop system, to illustrate the potential for NMR
quantum computers to be as pervasive as current day silicon, digital computers.  To do this
requires the construction of a table-top NMR spectrometer with the sensitivity and resolution
specifications required to resolve spin-spin couplings using commercially available technologies.
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5 INSTRUMENTATION DESIGN CONSIDERATIONS
5.1 A General NMR Spectrometer
The construction of a desktop quantum computer is the same as that of a high-resolution
spectrometer.  The task of performing a relatively complex quantum computation and extracting
the result is equivalent to probing a protein to determine its structure.  The general model for an
NMR spectrometer is fairly simple.  The fundamental requirements are means by which to excite
spin transitions and a means to measure their relaxation to equilibrium.  Though the reality of
building a system is something short of an evolved art, the staples are basic.  Figure 5.1
illustrates such a system in generality. The process of excitation and measurement need to be
automated and controlled by a centralized controller.  A bias magnetic field source is required to
induce a spin population difference and thus a net bulk magnetization.  High current amplifiers
are required to drive inductive coils to generate B1

 fields for excitation. A low-noise pre-
amplification stage is needed to amplify the small induced magnetization in a read-out coil
positioned transverse to the bias field.  A gain stage follows the low-noise pre-amplification to
insure a high-level signal for processing.  The high-level signal is filtered to reduce the
admission of noise and extraneous interference, and then digitized for analysis.

Data Acquisition
     Controller

Bias Field Power Source

Excitation
Amplifier

Low-Noise
Amplifier Excitation/Read-Out

             Coil

Pole Pieces

Figure 5.1:  The canonical NMR spectrometer consists of a bias field source to generate a macroscopic
magnetization, an excitation field source to manipulate spins, and a low-noise amplifier to read-out minute
transverse magnetization.  The pole piece are generally mu-metal piece used to create a region uniform bias
field region for the sample.  A single coil can be used for excitation and read-out with switches to
multiplex between the two.

A survey of equipment and instrumentation is instructive to understand the which technologies
are available for the design of a table-top spectrometer.  For reproducible spectra, homogeneous,
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stable sources of DC magnetic fields are required.  Sensitive magnetometers are also required to
measure the response of the spins to applied excitation magnetic fields.   Table 5.1 offers a
preliminary list of specifications for candidate magnets and magnetometers.

Magnetometer Resolution Field Range Bandwidth SNR
Solenoid 6nT/sqrt(Hz) 10e-6G->inf 1Hz-1MHz 6nT/sqrt(Hz)
Hall Probe 130mV/T 10e-10G-

>1000G
DC-1MHz 0.5uT/sqrt(Hz)

Magnetoresistive
Bridge

0.1uT/sqrt(Hz) 10e-6G->50G DC-1GHz 0.8nT/sqrt(Hz)

Flux Gate 0.1-
10nT(100pT)

1e-10T->1e-4T DC-10kHz 3.8pT/sqrt(Hz)

Magnetic Resonance
Force Microscopy

50Ang
deflection

DC-GHz 5e-3
Ang/sqrt(Hz)

SQUID 200fT->3pT 10e-10G->10e-
4G

2MHz 10fT/sqrt(Hz)

NMR
(proton precession
magnetometer)

1nT 10e-8G->1G 0.5nT/sqrt(Hz)

Field Source Strength Homogeneity Stability
Permanent
Magnet

~1T ~30ppm/cm

Intramagnet ~2e5G 5ppm 5ppm
Earth's Field ~0.5G 10e-8ppm/cm 2.5e-

8T/year
Electromagnet ~0.5T ~10ppm/10cmDS

V
0.1ppm/3s

Superconducting ~20T 3ppm/50cmDSV 0.1ppm/hr

Ang=Angstrom, G=Gauss, T=Tesla, ppm=part per million, W=weber

Table 5.1: Typical  Magnet and Magnetometer specifications

5.2 Measurement of Magnetization
The physical observable of interest in magnetic resonance systems is the bulk magnetization.
Macroscopically, the magnetization manifests itself as a property of media in a manner
equivalent to magnetic field strength

& & &
B H Mo= +µ ( ) .

Thus, the same techniques used to measure magnetic fields can be applied to measure magnetic
resonances.

Though many magnetometers exist, and are listed in Table 5.1, the most common technique
employed in NMR spectrometers is the use of a simple solenoid or coil.  The use of a solenoid to
measure a particular magnetic resonance system is a problem in flux linkage.  Though a direct
measurement of the bulk magnetization due to population differences is possible, the expected
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signal is extremely small.  The choice to measure the transverse magnetization affords the
advantage of increased signal strength due to the precession dynamics of the spin.

Maxwell’s equations in differential and integral form are

∇ ⋅ =ε ρ
&
E ε ρ

& &
E dA dV

S V

⋅ =∫ ∫ (Gauss’ Law)

∇ × = −
&

&

E
dB

dt

& & & &
E dS

d

dt
B dA

C S

⋅ = − ⋅∫ ∫ (Faraday’s Law)

∇ ⋅ =
&
B 0

& &
B dA

S

⋅ =∫ 0

∇ × = +
& *

&

H J
dD

dt

& & & & & &
B dS J dA

d

dt
E dA

C S S

⋅ = ⋅ + ⋅∫ ∫ ∫ ε . (Ampere’s Law)

For the measurement of the macroscopic transverse magnetization, Faraday’s Law in integral
form is of interest.  It states that a difference in electric potential is created and due to the
changes in magnetic field strength in the area circumscribed by the path.  Faraday’s induction
law is pictorially represented in Figure 5.2.  In the vernacular, Faraday’s law says the voltage
measured at the terminals of a solenoid equals the change of the magnetic field within the coils.

VCOIL(t) B(t)

Figure 5.2:  Faraday’s law states that a changing magnetic field flux will induce a rotating electric field.  If
the magnetic flux within a winding of coils changes over time, a voltage will develop across the terminal of
the coil proportional to the rate of change of the magnetic field flux.

To calculate the maximum signal strength expected from a solenoid measurement on a magnetic
resonance system, the expression of magnetic flux in the presence of media is used.  The
expression derived from quantum mechanics for the bulk magnetization is substituted.  The
derivation yields

V

N

d

dt
B dAcoil

coil S

= − ⋅∫
& &
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M t Rcoilµ ω φ π0 0 0

2sin( )
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where Ncoil
 is the number of turns in the coil; N is the number of spins in the sample; and Rcoil

 is
the radius of the coil..

5.3 Noise and Interference
The corruption of desired signals limits instrumentation measurement precision.  Unwanted
signals stem from two main sources, physical sources and external sources.  Physical noise
sources comprise of noise signals generated through physical mechanisms like those in resistors
and current transport in solid-state circuits.  They are inherent to an instrument.  Though their
contribution can be reduced, their presence is unavoidable.  The second source of unwanted
signals is generally referred to as interference.  Interference is an unwanted signal which
electrically or magnetically couples into an instrument from an external source such as a
radiating antenna or a turning magnetic motor.  Through proper design and thoughtful
packaging, interference can be significantly reduced.  With great effort, interference can be all
together avoided.

5.3.1 Physical Noise Sources
Physical noise sources are intrinsic to the solid-state components used in circuits, and find their
origin in fundamental thermodynamic processes.  Fluctuation-dissipation processes manifest as
Johnson noise in resistors.  Equipartition noise contributions are attributed to capacitors and
inductors.  Current transport across potential barriers are also a source of noise.  For monolithic
integrated circuits (ICs), such as operational amplifiers, manufacturers specify noise quantities in
the form of voltage noise, current noise, and the noise figure.  In combination, these noise
sources constitute the noise floor of the system—the absolute minimal noise level a system can
attain.

Perhaps the most enigmatic physical noise source is 1/f or flicker noise.  1/f noise is ubiquitously
found in a divergent range of physical systems, however there is no unifying physical
mechanism to describe its presence.  The name, 1/f, is due to the spectra of 1/f noise. Figure 5.3
displays a divergence in the noise spectra as frequency goes toward zero.
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Figure 5.3:  The spectral of character of 1/f noise diverges toward DC.
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Shot noise is due to the granularity of current.  Since current is actually a flow of electrons, there
is necessarily a statistical fluctuation in the arrival times of the electrons across a junction.  With
the assumption that the electrons are independent of each other, the arrival times can described
by the Poisson probability distribution, and yield a current fluctuation,

I qI Bshot dc= 2 ,

where q is the charge per electron, Idc
 is the DC current flowing across the junction, and B is the

bandwidth of the measurement device.  The units for the shot noise current is in amperes-per-

root-hertz, [ ]A
Hz .

Johnson noise belongs to a greater class of physical processes described by the fluctuation-
dissipation theorem.  The fluctuation-dissipation theorem has many manifestations, among them
Einstein’s relations for Brownian motion in mechanical systems and Nyquist’s relations for
electronic systems, which leads to Johnson noise.  The intuitive explanation for Johnson noise is
simple.  Electrons in a resistor become excited due to thermal agitation—energy fluctuations.
They then move randomly due to Brownian motion induced by heat energy—dissipation of the
acquired energy.  These electrons, however are charged particles, and the flux due to their
random motions constitute a current through the resistor.  A current through a resistor generates
a voltage across the resistor. This spurious voltage is referred to as the Johnson noise of the
resistor.  Without a complete derivation of Nyquist’s theorem from the fluctuation-dissipation
theorem, the expression for Johnson noise is

V k TRBR B= 4 .

The notation is indicative of the manner in which noise is characterized.  VR
 is obviously a root-

mean squared (rms) measurement.  The kB
 is the thermodynamic Boltzmann factor, T is the

temperature in units of Kelvin, R is the resistance of the resistor, and B is the bandwidth of the
measurement device in hertz.  The inclusion of the bandwidth factor indicates that this noise

voltage is measured in units of voltage-per-root-hertz [ ]V
Hz .

The rationale for this unit is obvious with the consideration of the nature of noise.  Since Johnson
noise is the result of a time-invariant, collective random process, in mathematical terms it is
stationary, Gaussian, broadband noise.  Figure 5.4 elucidates these terms with a time-series,
histogram and associated spectrum of Johnson noise. The amount of noise admitted to the system
can be considered as the area under the noise spectrum in the frequency band on interest.  This
area is the power of the noise signal.  If the system is very narrowband—it measures a frequency
range of only a couple of hertz, for example—then the amount of noise it admits is much less
than a wideband device, hence the bandwidth dependence.
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Figure 5.4:  A time-series, histogram, and spectrum of gaussian-distibuted, stationary, white noise.

With each capacitor and inductor is associated an equipartition contribution of noise.  The
inclusion of either passive, energy-storing components adds an extra degree of freedom to the
system.  As with a volume of ideal gas, associated with each degree of freedom is an
equipartition contribution of energy.  In the volume of gas, a gas molecule has three degrees of
translational freedom.  For each degree of freedom, ½kBT of internal energy is attributed to the
gas, thus the familiar E=3/2NkBT expression for internal energy of a N-molecule gas.  In the case
of an electronic system, this is no different.  Each capacitor and inductor contributes another
degree of freedom, which is evidenced mathematically by an increasing system order per
addition of energy storage element.  A mean energy is stored in each component due to an
equipartition contribution of energy, which implies the existence of a baseline root-mean squared
current or voltage through an inductor or across a capacitor expressed as,

I
k T

LL
B= , for an inductor,

V
k T

CC
B= , for a capacitor.

Noise in systems is generally characterized by the noise figure.  The noise figure of a system is a
measure of the noise contributed by the system over the baseline of noise introduced by the
source resistance of what is being measured.  Mathematically, the noise figure is

NF
V I R V

V
n sys n sys sys n source

n source

≡ ⋅
+ +







10 10

2 2 2 2

2log
, , ,

,

,

and is measured in decibels (dB).  Though values for voltage and current noise accompany
operational amplifiers, they are also characterized by a noise figure.  A low noise figure is a
strong figure of merit for low-noise preamplifiers and other systems which condition very small
signals.

5.3.2 Interference Sources and Solutions
Interference from external sources is the predominant source of signal corruption in
measurement systems.  The three main mechanisms for the introduction of interference into a
circuit are electrical (capacitive) coupling, magnetic (inductive) coupling, or irradiation by
propagating electromagnetic waves.
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Capacitive coupling of electrical signals involve the introduction of unwanted low frequency
signals into the system.  The model for this mechanism is a parallel plate capacitor, pictured in
Figure 5.5.  If the voltage on one plate of the parallel plate capacitor is driven, an electric field is
created between the two plates.  If the electric potential on the second plate is not secured to a
voltage source, its voltage will change in accordance with the changes on the first plate to satisfy
Maxwell’s equations.  If the second plate is secured to a voltage source, displacement currents in
the second plate will arise as the electric field adjusts to meet the boundary condition set by the
second plate.

E(t)
V(t)

Figure 5.5:  An electrode driven by a changing voltage will couple to a floating electrode through an
electric field.  The signal which develops on the floating electrode is proportional to the change of voltage
on the driven plate.

The effect of these electrostatic couplings can be quantified through Maxwell’s Equations cast in
the form of boundary condition constraints.  In practice, the oscillating plate of the parallel plate
capacitor is any wire or metallic objects which has an changing voltage.  This includes power
lines, wires in and around computers or electronic circuits, phone lines, or even wires and pins
within the measurement electronics.  The second plate is a wire in the measurement device; a
resistor, capacitor or inductor lead; a pin on a chip; or anything conductive.

The same mechanism which allows for the measurement of bulk magnetization also admits
signal corruption.  If a motor suddenly starts, if a computer monitor degausses, if there is any jolt
of magnetic field flux, that change in magnetic field could induce a current in and a voltage
across the terminals of the coil resident in a measurement circuit.  This is the nature of inductive
coupling.  Figure 5.6 portrays a possible scenario for magnetic coupling.

B(t)

Vloop(t) A
AVloop(t)

Figure 5.6:  The abrupt ignition of a motor induces a magnetic field flux impulse which can couple into a
sensitive measurement circuit through a loop of wire.

The final mechanism for the introduction of electromagnetic interference is simply
electromagnetic radiation.  RADARs, fluorescent lights, cellular phone, wireless local area
network links—an antenna of any sort—are all possible sources of propagating electromagnetic
radiation which may couple into measurement electronics. Though the mechanism for coupling
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into a circuit is the same as either capacitive or inductive coupling—the electric and magnetic
fields act quasi-statically locally—the deviousness of radiation is that it propagates and can
potentially bathe an entire laboratory in interference.

The defense against interference includes physical and algorithmic solutions.  The most obvious
solution is to make sensitive measurements far from the electromagnetic pollution of urban
development.  For applications which require the use of electronics near sources of interference,
physical shielding of the electronics will help.  For electrostatic interference, conductive
materials held at a potential (like ground) surrounding the circuit will swallow stray electric
fields.  The physical mechanism which enables electrostatic coupling is now used to keep the
sensitive electronics from accidentally measuring unwanted signals.

For the case where the interference source is resident with the measurement electronics, proper
design steps must be taken.  Digital systems and sensitive analog systems should always be
physically separated.  Extremely sensitive analog systems should be completely shielded.  On a
printed circuit board a ground plane can be poured to protect individual pins, and small,
grounded, metallic box should enclose sensitive electronics to establish a physical barrier
between it and the environment.

For magnetically coupled interference, a similar method works.  Rather than conductive
materials, mu-metal, a material with a high magnetic permeability, must be used to guide
magnetic flux away from a circuit.  Since electromagnetic radiation must obey the same
boundary conditions as static fields, these shielding methods work equivalently well to protect
electronics from radiated interference.

Often, large workspaces need to be protected against interference to develop sensitive
instrumentation.  In order to create an electromagnetic oasis in the middle of civilization,
Faraday cages are used.  Faraday cages are large (sometimes walk-in sized) boxes completely
lined with fine metal mesh, usually copper, which is held at ground potential.  The copper mesh
keeps the enclosed area free of electrostatic noise external to it.  It also prevents electromagnetic
radiation with wavelengths longer than the mesh size from entering.  Magnetic interference,
however, still needs be shielded with mu-metal.  Faraday cages are commonly used to shelter
entire experiments from interference.

If physical shielding is not possible or impractical, understanding the nature of electromagnetic
interference is useful in its elimination.  Most sources of electromagnetic interference are man-
made, and possess a characteristic spectra.  For instance, power lines carry current at 60Hz.
Computer monitors often have refresh rates between 50 and 70kHz.  If the nature of the
interference source is known, then electronic filters can be designed to reject noise outside the
frequency bands of the signal of interest.
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6 EXPERIMENTAL CONSIDERATIONS
For specific applications, certain measurement techniques can be applied to reduce noise and
enhance signal strength.  These techniques involve both instrumentation design and the use of
physical principles.  Ultimately, the sensitivity of a measurement is not determined by absolute
signal strength, but rather by the signal-to-noise ratio (SNR) of the measured signal.  If a signal
is too noisy, then the uncertainty in the measurement is large.  If there is no noise or uncertainty
whatsoever, then measurement is infinitely resolved.  The signal-to-noise ratio is measured in
units of dB, and is defined in a manner analogous to the noise figure,
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where Psignal
, Pnoise are the power of the signal and noise, and Vsignal, Vnoise

 are the voltages.

In NMR, a good signal to noise ratio is necessary to detect the small transverse magnetization
signal against a background of noise.  A back of the envelope calculation of the voltage that can
be expected across the terminals can be performed using
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4

γ
µ π .  (6.1).

6.1 NMR Signal Strength Enhancement Methods
The observed magnetization due to spin precession is quite small.  Since a figure of merit in such
a sensitive measurement is the signal-to-noise ratio, it is imperative to eliminate all sources of
interference, reduce the effect of physical noise sources and enhance signal strength as much as
is practically possible.

Averaging can be used to limit the effect of unavoidable physical noise sources.  Since physical
noise sources are generally gaussian-distributed with zero mean, the central limit theorem
suggests an average of their processes will yield progressively tighter variance and a very peaked
distribution about zero.  Figure 6.1 illustrates the effect of averaging more and more samples of a
gaussian-distributed noise source with zero mean.

Equivalently effective is the use of a tuned coil.  If the read-out coil is tuned to the desired
resonant frequency of the spins, noise can also be reduced.  Since physical noise sources tend to
have a broadband character, the tuned coil acts as a sharp, bandpass filter which only passes the
bulk magnetization signal of interest and the small band of noise found at the frequencies of the
resonance.
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Figure 6.1: Sample averaging reduces the influence of gaussian-distributed, zero-mean, white noise, such
as those generated by physical noise sources.  The data sets are simulations generated with a three-volt
peak-to-peak signal buried in a gaussian, white noise source with zero mean and a standard deviation of
12.75 volts.  The panel in the upper left-hand corner is a single-shot.  To its left and following from left to
right across the second row, the data sets represent averages of ten, one-hundred, one-thousand, ten-
thousand.  The right-most panel in the second row is the original, uncontaminated sinusoidal signal.

Equation (6.1) suggests the following means of increasing signal strength for a read-out coil
NMR spectrometer system.

• Use the strongest bias field available.  The square dependence of signal strength
on the strength of the bias field plainly illustrates the use of increasingly higher
and higher bias fields in high-resolution NMR spectroscopy.

 
• Add more turns to the read-out coil.  This is a simple design implementation.

The signal strength has linear dependence on the number of coils used in the
read-out coil.  The cautionary note to the addition of turns is that an increase in
turns incurs an increase in coil resistance and inductance.  Coil also have an
intrinsic capacitance.  Read-out coils can be designed to be self-resonant, rather
than the attachment of parallel or series capacitance for tuning.  However, if the
read-out coil is also used as an excitation coil, undesired increases in resistance
and poor intrinsic frequency response due to the coil inductance and capacitance
may preclude the use of an extremely large number of turns.

• Use samples with more spins or high spin densities.  Obviously, more spins will
provide more signal.  Intuitively, there exists a linear dependence between signal
strength and spin number.  The practical limitation of using this technique is
more spins require more volume.  The generation of a strong, uniform bias
magnetic field is difficult across a bathtub-sized sample.  Winding an excitation
and read-out coil around a large sample is equally daunting.  The choice of
sample is useful in only certain circumstances as a sample is usually chosen
because it has chemical properties of interest.

 
• Use a wide diameter sample.  A linear dependence on the radius of the sample

enters in the signal strength expression through the flux linkage calculation.
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Again, the exploitation of this means of increasing signal strength is limited for
the same reasons which limits the use of a large volume of spin.

• Physically cool the sample.  The inverse dependence on temperature is an
artifact of a Taylor expansion of the Boltzmann distribution.  In a super-cooled
(millikelvin) experiment, the equilibrium magnetization itself is enhanced.  With
the current state of technology portable cryogenic systems are a reality.  The
limit of physical cooling is that a liquid sample must remain a liquid for the
assumption of liquid state NMR to hold.  Solid-state NMR is more complicated.

 
• Optically pump the sample.  The use of optical pumping significantly increases

the population difference, challenging the thermal constraint imposed by the
Boltzmann distribution.

• Choose a different type of spin.  The gyromagnetic ratio is a intrinsic property of
the type of spin under investigation.  An electron spin has a gyromagnetic ratio
1000 times larger than a proton spin.  Magnetic resonance investigations on
electrons, ESR or EPR, provides a much strong magnetization due to the linear
dependence on the gyromagnetic ratio.  However, associated with a higher
gyromagnetic ratio is higher resonant frequencies, which require more carefully
constructed instrumentation.

The use of the electron gyromagnetic ratio to polarize proton populations is also possible.  The
process is generically referred to as dynamic nuclear polarization (DNP), an example of which is
the Overhauser Effect.  It is a form of polarization transfer.  When a static magnetic field is
applied to a spin system, it becomes polarized in the sense that the two available energy states
are populated differently, inducing a bulk magnetization pointed or polarized in the direction of
the bias field.  The process of polarization transfer is simply swaps of the energy state
populations between two different spin types as in Figure 6.2.

spin type A   spin type B            spin type A    spin type B

up down      up  down               up  down     up  down

polarization

transfer
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Figure 6.2:  A polarization transfer simply swaps the energy-level spin population of two non-equivalent
spins types.

The mechanism underlying polarization transfer is symmetry.  The argument follows that given
by Reif in his explanation of the Overhauser effect, a polarization transfer between a proton and
electron spins.  Axial symmetry is established by the bias magnetic field.  The component of
magnetization along the direction of the bias field is a constant of motion, the implication being
that the z-component of angular moment is conserved.  As such, if a paired electron and proton
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spin are aligned in the same direction, an unmediated transition to flip both spins in the opposite
direction is forbidden, since spin angular momentum would not be conserved.  The only
transition of interest is the case where an electron spin is align in one direction and the proton
spin is aligned in the opposite direction.  The conservation of momentum requires that if one spin
is flipped, the other must flip as well.  The equilibrium master equation for the allowed
transitions is

( ) ( )N N W N N W
e p e p↓ ↑ ↑ ↓↓ ↑ ⇒ ↑ ↓ = ↑ ↓ ⇒ ↓ ↑ ,

where Nij
 are the populations of the ith spin type in the jth orientation and W is, again the

transition probability per second.  In thermal equilibrium, the populations of each spin type can
be re-expressed in a ratio,
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If an excitation field is introduced to saturate the electrons spins so that,
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the population expression becomes,
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However, the gyromagnetic ratio of an electronic is a 1000 times that of a proton.  So,
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≈ 2βµ

to a good approximation.  The result is that the proton spins are now polarized with the
gyromagnetic ratio of electron spins.  The population difference, and magnetization, have been
appreciably increased through polarization transfer.

6.2 Spectral Resolution
Equally important is the frequency resolution of the spectra.  The effect of a short T2

 is a
broadening of spectral peaks.  Line broadening smears the spectral peaks associated with a spin
resonance.  The reduced frequency resolution can prevent the identification of different spins due
to chemical shifts and the observation of interesting spectral structure due to spin-spin
interactions.  Spin-spin relaxation is an inherent artifact of the spin systems, so T2

 cannot be
completely eliminated.  However, spectral line broadening can also be attributed to
imhomogeneities in the bias magnetic field, since
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Variations in the bias field are reflected in variations (or a spread) in the resonant frequency.
The effect on T2

 can be quantified by

1 1 2

2 2 0T T B* = +
⋅

π
γ δ

.

The intrinsic T2
 due to spin-spin interactions is augmented by the bias field inhomogeneities to

produce an observed spin-spin relaxation time, T2
*.  Sources of line broadening related to bias

field uniformity can be reduced, but not completely eliminated due to thermodynamic
fluctuations.

6.3 Bias Field Inhomogeneity and Shimming
The most obvious source of field inhomogeneity is the design limit of the bias magnet.  In state-
of-the-art NMR spectrometers, bias fields produced by superconducting electromagnets are
stronger than 12T with a uniformity of a part-per-ten-billion.  Such uniform fields are achieved
through the use of a secondary set of coils, called shim coils, which adjust the magnetic field
generated by a primary electromagnet.  The process of enhancing bias field uniformity is called
shimming.  State-of-the art spectrometer further enhance frequency resolution in spectra by
taking a field profile of the bias field and performing software adjustments to the acquired data.
Since such highly uniform fields are required for high-resolution spectra, the very presence of
ferrous materials can alter a strong bias field.  The magnetic permeability of iron is significant
enough to introduce a nano-Tesla perturbation in a magnetic field from ten meters away.

An NMR quantum computer requires a bias field uniformity sufficient to resolve multiplet
structure, which reveals spin-spin interactions.  A test to insure a bias magnetic field is
sufficiently uniform for NMRQC is to resolve the septuplet splitting of a hydrogen resonance
due to chlorine in chloroform (CHCl

3
).  The coupling constant, J, for the hydrogen-chlorine

interaction is roughly 215Hz.  This implies a T2*  of roughly 4.7 milliseconds.  Assuming the T2*
decay is due completely to bias field inhomogeneities, the upper limit on bias field variations is
roughly 10-3 gauss.  The achievement of such small magnetic field variations seems to be an
Herculean task.  However, bias magnetic fields in a state-of-the-art NMR spectrometers have
produced observed T2* ’s of over a second, and suggests that shimming fields to these necessary
specifications is realistic in desktop apparatus.

In state-of-the-art spectrometers, shimming is a built-in feature; for homemade systems,
shimming remains an art which requires careful electromagnet and shim coil design, permanent
magnet and iron placement, and ingenuity.  Though the steps toward building an active shim
system for a NMR quantum computer which can dynamically adjust the bias field to compensate
for diurnal variations is still a topic of research, the theoretical problem is basic, and is one that
has been addressed in a systematic fashion by Chmurny and Hoult.

The essence of their method requires the modal expansion of the bias magnetic field into
spherical harmonics.  The general expression for the B0

 field in terms of a modal expansion in
spherical harmonics in spherical coordinates is
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where n refers to the order of the harmonic and m refers to the degree of the harmonic.  The Cnm

is the weight of the term in the expansion, the functions Pnm(cosθ) are the associated Legendre
polynomials of order n and degree m, and φnm

 is an arbitrary phase term.  The use of spherical
harmonics is due to the axial symmetry of the problem.  Harmonics with degree zero, i.e., m=0,
are termed zonal harmonics, and do not vary rotationally about the z-axis since the φ dependence
disappears.  The remaining harmonics where m is not zero are called tesseral harmonics.  The
division is important in light of spinning techniques which mechanically spin the sample about
the z-axis as a means of averaging away inhomogeneities due to field variations in φ.

The advantage of describing the field in terms of a modal expansion is that the terms of a modal
expansion (the terms in the summation) are orthogonal to each other.  Conceptually, the model
for the design of shim coils required an active feedback system in which the bias field is
constantly monitored.  The shim coil system is comprised of a set of coils, each of which
generate a single harmonic.  As inconsistencies in the field are measured, each shim coil can be
adjusted to either add or subtract its harmonic from the field to restore uniformity.  Since the
shim fields are orthogonal, there is no concern regarding the interaction of shim fields; shimming
is reduced to toggling terms in an expansion.  In practice, the design and construction of shim
coils is not so easy.  Even turning the knobs to properly shim fields in a state-of-the art NMR
spectrometer is still regarded as a skill.  For an NMRQC, the issues of sample geometry, power
constraints, and required field homogeneity for complex computations, all of which play a role in
the determination of the geometry and design of a shim coil system, need be to addressed.
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7 INSTRUMENTATION CONSTRUCTION AND EXPERIMENTAL METHODS
The primary thrust of this body of work is to demonstrate the feasibility of desktop NMR
quantum computation.  The realization of this goal requires the construction of a desktop NMR
spectrometer capable of performing the tasks required to effect quantum computations, which
include the application of arbitrary pulse sequences to effect computations and the necessary
signal resolution to determine the calculated results.  The path to a practical desktop NMR
quantum computer requires the use of bias magnetic fields far weaker than those used in high-
end spectrometers, and relies on the creative use of current technologies and developments in
electronics and algorithms to compensate for the corresponding decrease in signal strength and
spectral resolution.

7.1 Earth’s Field Range NMR, Pre-polarization Techniques.
The first attempt to build a desktop NMR spectrometer involved the use of bias magnetic field
strength in the Earth’s field range, about 0.5 G.  To overcome the severe reduction in signal
strength associated with weak magnetic fields, the entire experiment was performed in a Faraday
cage to reduce the interference which may overwhelm the signal, and pre-polarization techniques
were employed.

Pre-polarization techniques are useful in circumstances where a strong, uniform bias magnetic
field is unavailable or impractical, but the resources to generate a strong inhomogeneous bias
field for a short duration are.  The use of pre-polarization is illustrated in Figure 7.1.  A weak
magnetic field, perhaps the Earth’s magnetic field, acts as the bias field.  A strong DC magnetic
field is applied to the spins in the direction orthogonal to the bias field for the duration of a
couple T1

’s.  The spins align themselves with the vector sum of the magnetic fields.  If the strong
DC field is much stronger than the weak bias field, to a good approximation the spins are aligned
with the strong DC field.  After a couple T1

’s, the strong DC field is quenched.  If the quench is
non-adiabatic (faster than the Larmor frequency) then the spins, aligned orthogonally to the weak
bias, precess about the bias field.  If the quench is perform adiabatically, the spins slowly follow
the decrease applied field and eventually align with the weak bias field.

The virtue of this technique is the dramatic increase in magnetization that it provides.  The
measured signal has a squared dependence on the bias field strength.  A more descriptive
expression of the equation is

V N
N B B

k T
Rmag coil

bias polarization

B
solenoid=

!
2 3

0
2

4

γ
µ π .

Indeed, the first magnetic field term is attributed to the magnetic field which generates an
equilibrium bulk magnetization; it is the magnetic field which polarizes the spins.  The second
instance of a magnetic field term comes from the Hamiltonian evolution of the spins as they
precess.  Since the measured transverse magnetization is a function of the change in
magnetization, the bias magnetic field enters through the Larmor frequency.  In the case of
conventional NMR, the bias field polarizes the spins and sets the Larmor frequency.  If only a
low bias field is available, a severe reduction in sensitivity is incurred.  If pre-polarization is
employed a signal boost can be acquired through the use of a strong polarization field, and only a
partial reduction is incurred due to the slow precession frequency.
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Figure 7.1:  The top sequence illustrates the progression of the magnetization in an adiabatic pre-
polarization.  The lower sequence is an non-adiabatic pre-polarization.

For the Earth’s field range experiments, three solenoids were constructed.  One to generate a
low-bias field, one to generate a strong pre-polarization field and excitation field, and one to act
as a read-out coil.  The bias field and pre-polarization coils were designed with the expression,

B
NI

l
=

µ 0 ,

in mind.  B is the magnetic flux generated by the solenoid of length l with N turns and a current I
running through the wire.  This is the approximation for a long solenoid, in the limit that the
length of the solenoid is much longer than the diameter of the solenoid.  The amount of current
through the coil is set by the resistance of the wire and the voltage placed across the wire.  A coil
with many turns is no longer inductive, but rather resistive, placing a constraint on the strength
of the magnetic field it can generate.  The coil also has a frequency response.  The more turns in
a coil, the tighter a low-pass filter it becomes.  This becomes an issue for excitation coil.  If too
many turns are used in the excitation coil, it may not be able to deliver the necessary field
strengths at the frequency of interest.  Coils also possess their own resonant frequency due to
their intrinsic inductance and capacitance.

The bias field coil was constructed from 18 gauge wire and wrapped around a water-cooler
bottle.  It was twelve centimeters long, with a diameter of 24 centimeters. Driven with an HP
6623A system DC power supply, it generated a 20G magnetic field at 1.74A.

The excitation coil, used for pre-polarization and excitation, consisted of 1000 turns of 22 gauge
copper-enameled wire.  It had an inductance of 33.4mH and a resistance of 10.11ohms.  The
excitation coil was driven by a power-amplifier consisting of a push-pull output stage built with
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Motorola TIP31 and TIP32 power transistors and an AD712 operational amplifier.  Cross-
coupled diodes were placed on the output for directional coupling.  The power source for the
power-amplifier was an HP E3631 triple supply, which could deliver 1A at 50 volts peak-to-
peak.  The 120kHz sinusoidal excitation was generated by an HP 33126A waveform generator
and fed into the SmartFish.  The SmartFish gated the excitation signal and controlled the
sequences for pre-polarization, excitation and data acquisition.

The read-out coil is 400 turns of 30 gauge copper enameled wire was wrapped around a Pyrex
flask.  It was self-resonant a roughly 119kHz.  The end-wires of the coil were twisted together to
prevent pick-up of extraneous fields.  The terminals of the read-out coil were fed into a Stanford
Research SR560  low-noise pre-amplifier, who output was connected to the SmartFish.

The SmartFish is a DSP-based data acquisition system capable of digitizing data at rates up to
10MSPS and generating arbitrary waveforms with an on-board digital-to-analog converter
(DAC).  The SmartFish communicates with a personal computer through an RS-232 protocol,
and can be remotely programmed and controlled through this link.  The schematics, printed
circuit board artwork, bill of materials, and final microprocessor code for the SmartFish can be
found in the Appendix.  A front-end software application was written to control the SmartFish
and to log and analyze data.

For the actual experiment, 5,000 shots were taken in an attempt to overcome the poor signal-to-
noise ratio expected in a low-field experiment.  Adiabatic pre-polarization was used.  A sample
of 100mL of water was placed in the read-out coil, and then the entire apparatus was placed in a
Faraday cage.   The SmartFish executed the following sequence 5000 times:  pre-polarize the
sample for 5T1

, wait for five decay constants of the excitation coil, perform a π
2  pulse, and

acquire data.  Two-thousand forty-six points of data were acquired at 300kSPS for a Larmor
frequency of roughly 120kHz.

7.2 Mid-Field NMR
Though a desktop system would ideally operate in an Earth’s field regime, the poor signal
sensitivity requires an unwieldy number of trials to see the most rudimentary effect, an FID.  The
mid-field regime is relative with the progress of technology, but roughly spans the kilogauss
range with an upper limit of a couple Tesla.  A system operating in the mid-field regime enjoys a
significant increase in signal strength while allowing for a significant decrease is sample size.  A
compact physical design can be further developed with the use of permanent magnets which can
generate magnetic field strengths of up to 2.2T with reasonable uniformity and acceptable
dimensions.

A move to a magnetic field strength three-orders of magnitude stronger than the Earth’s
magnetic field takes the operating frequency from audio frequencies to RF.  The instrumentation
lexicon must be extended from simple operational amplifiers and wires to power-splitters,
double-balanced mixers, RF amplifiers and transmission lines.  Notions of impedance matching
and reflections effect the operation of seemingly simple circuits.  Maxwell’s equations can no
longer be used in the quasi-static regime.  Luckily, the design of RF systems have been greatly
simplified with the commercialization of monolithic RF parts.  Proper considerations, however,
should still be made when working in the RF regime.

The NMR apparatus used for the mid-field experiments was that of the MIT Physics Department
Experimental Physics (Junior) Laboratory, courtesy of Prof. Jordan Kirsch.  The pulse sequence
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generation and data acquisition was again performed with the SmartFish under software control
from a laptop computer.

The system is based about an operation frequency of 5MHz.  The bias field is generated by a
water-cooled electromagnet, with a field of roughly 1kG.  The probe circuit, pictured in Figure
7.2, is a simple resonant LC tank circuit tuned to the Larmor frequency.  The inductive element
is the read-out/excitation coil.  A capacitive divider is used.  The capacitance in parallel with the
coil is adjusted to tune the circuit to the Larmor frequency.  The series capacitance is then tuned
such that the probe is impedance matched at 50 ohms.  The number of coil windings is small, and
the length of the coil need only encompass the sample to the extent that the excitation fields are
uniform across the sample.  The probe is then potted to secure prevent mechanical vibrations and
enclosed in an aluminum box to shield it from electromagnetic interference.

Ca

Cb
Lcoil

Ca

Cb Lcoil

Figure 7.2: Two possible configurations for a probe circuit.  The one on the left uses a capacitor in series
with a capacitor in parallel with the coil.  The one on the right uses a capacitor in parallel with a capacitor
connected in series with the coil.  The two configurations are equivalent.

The instrumentation to manipulate spins and measure spin properties are basic.  The SmartFish,
again served as a means of coordinating excitation and data acquisition, and was programmed
through a software interface on a laptop computer.  A schematic representation of the system is
pictured in Figure 7.3.

A 5MHz oscillator generated the waveform used to excite the spins and served as a local
oscillator to mixed-down the incoming magnetization to audio frequencies.  The 5MHz signal is
fed into a power-splitter which, in turn, feeds an RF switch and double-balanced mixer.  At RF
frequencies, impedance matching is critical to prevent the signal from reflecting back to the
source.  If there is an impedance mismatch, reflections prevent the signal from delivering its full
power to its destination.  The power-splitter simply insures impedance matching:  if a 50 ohm
cable were fed two 50 ohm cables, it would see an equivalent 25 ohm resistance due to the
parallel impedance of the two cables—an impedance mismatch.  The power-splitter insures that
the feed and receive cables sees a 50 ohm load.  The SmartFish provides a TTL-level (0 to 5
volt) control signal to the RF switch to gate the excitation signal.  The output of the RF switch is
fed to a power amplifier which drives the coil.  Between the coil and the power amplifier is a
pair of cross-coupled diodes.  In a single-coil apparatus, these cross-coupled diodes are essential
to decouple the drive circuitry from the coil and sensitive detection electronics when its not in
use.  When the coil is driven, the cross-coupled diodes pass the signal.  When the coil is not
being driven, the diodes act as an open circuit, separating the drive electronics from the probe.

The detection electronics consist of a second pair of cross-coupled diodes and a high-gain, low-
noise preamplifier.  The cross-couple diodes sit between the input of the preamplifier and
ground.  This prevents the drive circuitry from destroying the preamplifier during excitation.
When the signal is larger than a diode drop, the diodes conduct to ground, channeling current
away from the preamplifier input to ground.  When signals, like the magnetization signal, are
less than a diode drop, the diodes act as an open-circuit.
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The amplified magnetization signal is fed into the double-balanced mixer, which is used for
phase detection.  Mixed-down with the signal from local oscillator, the output of the phase
detector is the magnetization signal at the beat frequency, the difference between the local
oscillator and Larmor frequency.  The output of the phase detector is fed into the SmartFish
which logs the time-series waveform for presentation and analysis.

SmartFish

Power
Splitter

RF Switch

Phase
Detector

Oscillator

Pre amplifier

Power Amplifier0

5

Figure 7.3:  An outline of the mid-field NMR apparatus used to observe spin precession.

Initial experiments used a thumb-sized sample of glycerin; glycerin was chosen for its strong
resonance signal.  Two experiments were performed to characterized the system and insure the
complete functionality of the system.  To measure the proper π

2 -pulse duration, the spins were
tipped with excitation pulses.  Beginning with a 1µs pulse, the pulse duration lengthen by 1µs
increments for 300 shots.  After each pulse, the FID which result was acquired.  A plot of the
FID signal strength versus pulse duration was made.  The pulse length which generated the
maximum signal strength indicates the correct π

2 -pulse duration.  A spin echo experiment was

then performed to verify the empirically derived π
2 -pulse width, and to gain a qualitative feel

for T2*  of the bias magnetic field before undertaking further work which requires fine spectral
resolution.
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8 RESULTS
The spectra taken from both the low-field and mid-field apparatus were limited.  The greatest
obstacle encountered in both experiments was the limited bias field homogeneity.  The large T2*
produced extremely broad spectra and quickly decaying FID’s.

The low-field experiments yielded no signals and generated no results.  The large bias field
gradient suggested the appearance of a broad swell in the spectra as in indication of the poor
homogeneity.  Unfortunately, the spin resonance energy was divided so divergently among the
different frequencies that external interference easily overwhelmed the signal of interest.  Rather
than measuring spin resonance, the apparatus measured spectral components related to various
other projects in the lab and artifacts of power systems.

The mid-field experiments boasted slightly more promising results, but were nonetheless
disappointing.  Due to the phase detection method of measurement, the RF pulses were slightly
off-resonance.  Calibration experiments were performed to find an optimal π

2 -pulse width.  The
trials were slightly flawed as a sufficient relaxation time was not permitted between pulses for
the spins to return to equilibrium.  Rather than a sinusoid, the plot of resonance signal strength
versus pulse length displays a decay, pictured in Figure 7.4.  Drift in the bias magnetic field also
produced corresponding deviations in the Larmor frequency, and resulted in error as the data
collection process proceeded.  The salient feature of the plot, the periodicity, however remained
intact, and from it, π 2 -pulse and π-pulse periods were inferred to be 39µs and 78µs respectively.
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Figure7.4:  A plot of pulse length versus time used to determine the optimal π
2 -pulse duration.

With the value determined for an optimal π
2 -pulse width, spin echo experiments were

performed to enhance the observable magnetization and to gain a qualitative feel for T2*.  Initial
plans were to quantify the value of T2* through a series of spin echo experiments, but
preliminary results suggested that the magnetic field in the electromagnet bore were sufficiently
non-uniform to preclude the necessity of proceeding with those experiments.  The results of
those spin echo experiments are presented in Figure 7.5.  Though the signal-to-noise ratio of the
measured signal is excellent, the frequency resolution indicated by the broad spectral peaks
prevent the appearance of spectral structure indicative of spin-spin interactions—the physical
interactions of interest in NMR quantum computation.
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Figure 7.5:  Time-series and spectra of glycerin spin-echoes taken in a ~1kG magnetic field.  The signal
strength has been quantized into 12-bits across and analog range of five volts..  A 90-180 pulse sequence
was applied to the glycerin sample.  The initial plateau in the time-series is the pre-amplifier recovering
from the 180 pulse.  What follows is the spin-echo, as the transverse magnetization regains phase
coherence and loses it again in a characteristic time scale T2.  The resonant frequency is not properly
represented as a phase detection scheme was used to measure the magnetization.  The observed frequency
is actually the beat frequency between the resonance and a local oscillator.  The data set to the left is a one-
shot.  The data set to the right was averaged over 100 shots.
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9 REFLECTIONS
This thesis has been written, not in closure, but in preparation.  It is a marker for trials past, and a
prescription to guide research for the future.  In performing the task leading to the construction
of a desktop quantum computer many pitfalls were encountered and many lessons learned.  The
most important lesson is the necessity of extremely uniform bias magnetic fields.  Without them,
interesting spectral structure attributed to spin-spin interactions—interactions required for
quantum computation—are unobservable.

Though the original concern in constructing a desktop NMR spectrometer was with regard to
boosting the signal-to-noise ratio, the experimental results clearly show that the limitations are
that of frequency resolution.  Current electromagnet and permanent magnet systems are compact
and amenable for commercial use.  They generate field strengths necessary to observe magnetic
resonance easily.  These magnet systems, however, seldom produce fields with the uniformity
required to generate highly resolved spectra.  The focus of future research must address this
shortcoming of field uniformity with either active shim systems; better bias magnet geometry; or
experimental techniques, such as sample spinning, which allow for the variations in magnetic
field to be averaged away.

In closing, a potential geometry for an NMR quantum computer is proposed.  Though it is true
that an NMR quantum computer is essentially an NMR spectrometer, a NMR quantum computer
need not possess the generality and flexibility which are available in a high-resolution
spectrometers.  For example, an NMR spectrometer allows for the switching of samples.  An
NMR quantum computer operates on only one sample, which need not be changed.  NMRQC
needs are simple:  uniform and stable magnetic fields and consistent excitation fields.  To
generate consistent excitation fields is simply a matter of constructing sound, matched, low-drift
drive electronics.  The creation of uniform bias fields provides an avenue for creativity.

The proposed NMR quantum computer consists of a flux-ball electromagnet within which
resides a flux-ball excitation/read-out coil and a spherical sample.  The sample itself perturbs the
bias field.  Using a spherical sample geometry is a means of reducing those perturbations.  A
flux-ball electromagnet geometry is a structure which produces uniform magnetic field within a
sphere, as illustrated in Figure 9.1.  As opposed to a solenoid, which only generates an uniform
magnetic field in the ideal case of being infinite, a properly wound spherical coil will always
generate a uniform field.

B

Figure 9.1:  Flux-ball electromagnet is built by winding coils around a sphere.  The current in the coils
constitute a surface current which gives rise to a magnetic field.  The field is dipole in nature;  the magnetic
field within the sphere is uniform.
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Similarly, the non-ideality of a solenoid affects the performance of the excitation coils.  For the
application of a tipping pulse, the rate of tipping is determined by the excitation field strength.  If
a sample sits unevenly in an excitation coil, part of the sample sees a weaker excitation field than
other parts of the sample.  The results is that the application of a π

2 -pulse turns some spins into

the transverse plane, and leaves other spins rotated at an angle less than π
2  from the bias field

axis.  This error adds as the number of pulses in the pulse sequence increases, and presents a
significant problem in the accuracy of the quantum computation.  With a flux-ball excitation
coil, the uniformity of the fields prevents errors due to uneven excitation of spins.  Though the
signal strength may suffer with the read-out coil being of spherical geometry, it is painfully
obvious that a slight loss in signal strength for a tremendous gain in frequency resolution is a
good trade-off.

The journey down the road to realizing practical quantum computation for the general population
has just begun.  The recent innovation of using NMR to perform quantum computation has
represented a huge step forward toward this goal.  Though this effort may terminate with results
short of a quantum coprocessor in the motherboard of a desktop computer, the effort toward that
end is rich with opportunity and discoveries which will benefit the practice of NMR, the study of
quantum mechanics, and the design of electromagnet systems and magnetometers.  As with all
ambitious endeavors, the means to a personal quantum computer is every bit as important as the
end.
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10 APPENDIX

SmartFish Data Acquisition System

Schematics
Board Fabrication Artwork
Firmware
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{ Smart-Fish ADSP-2171 Code.  Version zero: Crawling.

Jlab715.dsp nmr controller code for junior
lab apparatus.  Spin echo display.

}

.MODULE/RAM/BOOT=0/ABS=0 SMISH; {Beginning of SMISH.DSP}

{-----define ports for peripheral access-------}
.PORT bus;

{-----define constants for HIP locations------}
.CONST hsr0=0x3FE0, hsr1=0x3FE1, hsr2=0x3FE2, hsr3=0x3FE3, hsr4=0x3FE4;
.CONST hsr5=0x3FE5, hsr6=0x3FE6, hsr7=0x3FE7;

{----linear buffers----}
.VAR/DM/RAM/ABS=0x3000 command;
.VAR/DM/RAM/ABS=0x3001 halfpi;
.VAR/DM/RAM/ABS=0x3002 fullpi;
.VAR/DM/RAM/ABS=0x3003 wait;
.VAR/DM/RAM/ABS=0x3004 writereg;            

{---------Interrupt Vectors----------}

JUMP start; RTI; RTI; RTI; {RESET IRQ}
RTI; NOP; NOP; NOP; {IRQ2 unused}
JUMP iread; NOP; NOP; NOP; {HIP Write IRQ}
JUMP iwrite; NOP; NOP; NOP; {HIP Read IRQ}
RTI; NOP; NOP; NOP; {SPORT0 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT0 RX IRQ}
RTI; NOP; NOP; NOP; {Software IRQ1}
RTI; NOP; NOP; NOP; {Software IRQ2}
RTI; NOP; NOP; NOP; {SPORT1 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT1 RX IRQ}
RTI; NOP; NOP; NOP; {TIMER IRQ}
RTI; NOP; NOP; NOP; {Powerdown IRQ}

{------Start Up Configurations---------}

start: AX0=0x0018;
DM(0x3FFF)=AX0; {System Control Register}

AX0=0x0142;
DM(0x3FFE)=AX0; {DM wait states}

AX0=0;    {Timer Registers}
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;
AX0=31; {prescale for uS}
DM(0x3FFB)=AX0;

AX0=0x0020;
DM(0x3FE8)=AX0; {HMASK IRQ register}

M0=0; M4=0; {do not increment}
M1=1; M5=1; {increment by ONE}

{----parameter initialization----}

RESET FL0; {no pulse}
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AX0=0;
DM(writereg)=AX0; {initialize writereg}

AX0=62;
DM(halfpi)=AX0;
AX0=66;
DM(fullpi)=AX0;
AX0=3500;
DM(wait)=AX0;

{-------waitloop for console instructions------}

talk: MSTAT=0x0010;
IMASK=0x180;
IDLE; {waiting for HOST WRITE}

JUMP echo;

respond: CNTR=1; {banks to return}
DO converse UNTIL CE;
IDLE;

converse: NOP;

JUMP talk;

{-----IRQ service routines-----}

{---HOST WRITE IRQ---}
iread: SR0=DM(hsr0); {read registers}

SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr1);
AR=SR0 OR AY0;
DM(halfpi)=AR;

SR0=DM(hsr2);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr3);
AR=SR0 OR AY0;
DM(fullpi)=AR;

SR0=DM(hsr4);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr5);
AR=SR0 OR AY0;
DM(wait)=AR;

RTI;

{---HOST READ IRQ---}

iwrite: AX0=DM(writereg);
AY0=1; {no. banks HC11 should read}
AR=AX0-AY0;
IF EQ JUMP wrap;

AR=DM(I0,M1);
DM(hsr0)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=DM(I0,M1); {read value}
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;
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AR=DM(I0,M1); {sanity checker}
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AX0=DM(writereg); {written}
AR=AX0+1;
DM(writereg)=AR;

RTI;

wrap: AR=0;
DM(writereg)=AR;
AR=0x020;
DM(0x3FE8)=AR; {disable HIP read IRQ}
DM(hsr0)=AR;
DM(hsr1)=AR;
DM(hsr2)=AR;
DM(hsr3)=AR;
DM(hsr4)=AR;
DM(hsr5)=AR;

RTI;

{-----spin echo subroutine-----}

echo: IMASK=0x0000;
MSTAT=0x0000;

tip: AX0=DM(halfpi);
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
SET FL0;
MSTAT=0x0030;
IDLE;

evolve: RESET FL0;
MSTAT=0x0000;
IMASK=0x0000;

AX0=DM(wait);
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
MSTAT=0x0020;

AX0=DM(fullpi);
IDLE;

invert: SET FL0;
MSTAT=0x0000;
IMASK=0x0001;

DM(0x3FFC)=AX0;
DM(0x3FFD)=AX0;

IMASK=0x0001;
MSTAT=0x020;
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IDLE;

acquire: RESET FL0;
MSTAT=0x0000;
IMASK=0x0000;

AX0=0xFFFF;
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
MSTAT=0x0020;

IDLE;

MSTAT=0x0000;
IMASK=0x0180;

AR=166{DM(I0,M1)};
DM(hsr0)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=200{DM(I0,M1)}; {read value}
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;

AR=400{DM(I0,M1)}; {sanity checker}
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AR=1;
DM(writereg)=AR;

AX0=0x2000;
DM(0x3FE8)=AX0; {enable HIP read IRQ}

JUMP respond;

.ENDMOD;
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{ Smart-Fish ADSP-2171 Code.  Version zero: Crawling.

Jlab716.dsp nmr controller code for junior
lab apparatus.  Spin echo acquisition.

}

.MODULE/RAM/BOOT=0/ABS=0 SMISH; {Beginning of SMISH.DSP}

{-----define ports for peripheral access-------}
.PORT bus;

{-----define constants for HIP locations------}
.CONST hsr0=0x3FE0, hsr1=0x3FE1, hsr2=0x3FE2, hsr3=0x3FE3, hsr4=0x3FE4;
.CONST hsr5=0x3FE5, hsr6=0x3FE6, hsr7=0x3FE7;

{----linear buffers----}
.VAR/DM/RAM/ABS=0x3000 halfpi;
.VAR/DM/RAM/ABS=0x3001 fullpi;
.VAR/DM/RAM/ABS=0x3002 wait;
.VAR/DM/RAM/ABS=0x3003 writereg;            
.VAR/DM data[2043];

{---------Interrupt Vectors----------}

JUMP start; RTI; RTI; RTI; {RESET IRQ}
RTI; NOP; NOP; NOP; {IRQ2 unused}
JUMP iread; NOP; NOP; NOP; {HIP Write IRQ}
JUMP iwrite; NOP; NOP; NOP; {HIP Read IRQ}
RTI; NOP; NOP; NOP; {SPORT0 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT0 RX IRQ}
RTI; NOP; NOP; NOP; {Software IRQ1}
RTI; NOP; NOP; NOP; {Software IRQ2}
RTI; NOP; NOP; NOP; {SPORT1 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT1 RX IRQ}
RTI; NOP; NOP; NOP; {TIMER IRQ}
RTI; NOP; NOP; NOP; {Powerdown IRQ}

{------Start Up Configurations---------}

start: AX0=0x0018;             
DM(0x3FFF)=AX0; {System Control Register}

AX0=0x0142;
DM(0x3FFE)=AX0; {DM wait states}

AX0=0;    {Timer Registers}
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;
AX0=31; {prescale for uS}
DM(0x3FFB)=AX0;

AX0=0x0020;
DM(0x3FE8)=AX0; {HMASK IRQ register}

AX0=DM(hsr0); {make sure HWR clear}
AX0=DM(hsr1);
AX0=DM(hsr2);
AX0=DM(hsr3);
AX0=DM(hsr4);
AX0=DM(hsr5);

M0=0; M4=0; {do not increment}
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M1=1; M5=1; {increment by ONE}

{----parameter initialization----}

RESET FL0; {no pulse}
RESET FL1;

AX0=0;
DM(writereg)=AX0; {initialize writereg}

AX0=62;
DM(halfpi)=AX0;
AX0=66;
DM(fullpi)=AX0;
AX0=3500;
DM(wait)=AX0;

I0=^data;
L0=0;
CNTR=%data;
DO prepare UNTIL CE;

prepare: DM(I0,M1)=AX0;

{-------waitloop for console instructions------}

talk: MSTAT=0x0010;
IMASK=0x180;
IDLE; {waiting for HOST WRITE}

SET FL1;
JUMP echo;

respond: CNTR=681; {banks to return}
DO converse UNTIL CE;
IDLE;

converse: NOP;

JUMP talk;

{-----IRQ service routines-----}

{---HOST WRITE IRQ---}
iread: SR0=DM(hsr0); {read registers}

SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr1);
AR=SR0 OR AY0;
DM(halfpi)=AR;

SR0=DM(hsr2);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr3);
AR=SR0 OR AY0;
DM(fullpi)=AR;

SR0=DM(hsr4);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr5);
AR=SR0 OR AY0;
DM(wait)=AR;

RTI;

{---HOST READ IRQ---}



100

iwrite: AX0=DM(writereg);
AY0=681; {no. banks HC11 should read}
AR=AX0-AY0;
IF EQ JUMP wrap;

AR=DM(I0,M1); {smoothed value}
DM(hsr0)=AR; {filters -- 16bit}
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=DM(I0,M1); {read value}
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;

AR=DM(I0,M1); {sanity checker}
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AX0=DM(writereg); {written}
AR=AX0+1;
DM(writereg)=AR;

RTI;

wrap: AR=0;
DM(writereg)=AR;
AR=0x020;
DM(0x3FE8)=AR; {disable HIP read IRQ}
DM(hsr0)=AR;
DM(hsr1)=AR;
DM(hsr2)=AR;
DM(hsr3)=AR;
DM(hsr4)=AR;
DM(hsr5)=AR;

RTI;

{-----spin echo subroutine-----}

echo: IMASK=0x0000;
MSTAT=0x0000;

tip: AX0=DM(halfpi);
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
SET FL0;
MSTAT=0x0030;
IDLE;

evolve: RESET FL0;
MSTAT=0x0000;
IMASK=0x0000;

AX0=DM(wait);
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
MSTAT=0x0020;
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AX0=DM(fullpi);
IDLE;

invert: SET FL0;
MSTAT=0x0000;
IMASK=0x0001;

DM(0x3FFC)=AX0;
DM(0x3FFD)=AX0;

IMASK=0x0001;
MSTAT=0x020;

IDLE;

acquire: RESET FL0;
MSTAT=0x0000;
IMASK=0x0000;

AX0=100;
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;
AX0=0;
DM(0x3FFB)=AX0;

I0=^data;
L0=0;
CNTR=%data;
AY0=0xFFF;

IMASK=0x0001;
MSTAT=0x0020;

DO record UNTIL CE;
IDLE;
AX0=DM(bus);
AR=AX0 AND AY0;

record: DM(I0,M1)=AR;

AX0=31;
DM(0x3FFB)=AX0;

MSTAT=0x0000;
IMASK=0x0180;

I0=^data;
L0=0;

AR=DM(I0,M1);
DM(hsr0)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=DM(I0,M1); {read value}
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;

AR=DM(I0,M1);
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AR=1;
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DM(writereg)=AR;

AX0=0x2000;
DM(0x3FE8)=AX0; {enable HIP read IRQ}

JUMP respond;

.ENDMOD;
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{ Smart-Fish ADSP-2171 Code.  Version zero: Crawling.

jlab.dsp nmr controller code for junior
lab apparatus

version 7.17.97 FID for pi/2 pulse maximization.
}

.MODULE/RAM/BOOT=0/ABS=0 SMISH; {Beginning of SMISH.DSP}

{-----define ports for peripheral access-------}
.PORT bus;

{-----define constants for HIP locations------}
.CONST hsr0=0x3FE0, hsr1=0x3FE1, hsr2=0x3FE2, hsr3=0x3FE3, hsr4=0x3FE4;
.CONST hsr5=0x3FE5, hsr6=0x3FE6, hsr7=0x3FE7;

{----linear buffers----}
.VAR/DM/RAM/ABS=0x3000 halfpi;
.VAR/DM/RAM/ABS=0x3001 writereg;
.VAR/DM data[2046];

{---------Interrupt Vectors----------}

JUMP start; RTI; RTI; RTI; {RESET IRQ}
RTI; NOP; NOP; NOP; {IRQ2 unused}
JUMP iread; NOP; NOP; NOP; {HIP Write IRQ}
JUMP iwrite; NOP; NOP; NOP; {HIP Read IRQ}
RTI; NOP; NOP; NOP; {SPORT0 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT0 RX IRQ}
RTI; NOP; NOP; NOP; {Software IRQ1}
RTI; NOP; NOP; NOP; {Software IRQ2}
RTI; NOP; NOP; NOP; {SPORT1 TX IRQ}
RTI; NOP; NOP; NOP; {SPORT1 RX IRQ}
RTI; NOP; NOP; NOP; {TIMER IRQ}
RTI; NOP; NOP; NOP; {Powerdown IRQ}

{------Start Up Configurations---------}

start: AX0=0x0018;             
DM(0x3FFF)=AX0; {System Control Register}

AX0=0x0142;
DM(0x3FFE)=AX0; {DM wait states}

AX0=0;    {Timer Registers}
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;
AX0=31; {prescale for uS}
DM(0x3FFB)=AX0;

AX0=0x0020;
DM(0x3FE8)=AX0; {HMASK IRQ register}

AX0=DM(hsr0); {make sure HWR clear}
AX0=DM(hsr1);
AX0=DM(hsr2);
AX0=DM(hsr3);
AX0=DM(hsr4);
AX0=DM(hsr5);
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M0=0; M4=0; {do not increment}
M1=1; M5=1; {increment by ONE}

{----parameter initialization----}

RESET FL0; {no pulse}
RESET FL1;

AX0=0;
DM(writereg)=AX0; {initialize writereg}

AX0=62;
DM(halfpi)=AX0;

I0=^data;
L0=0;
CNTR=%data;
DO prepare UNTIL CE;

prepare: DM(I0,M1)=AX0;

{-------waitloop for console instructions------}

talk: MSTAT=0x0010;
IMASK=0x180;
IDLE; {waiting for HOST WRITE}

SET FL1;
JUMP echo;

respond: CNTR=682; {banks to return}
DO converse UNTIL CE;
IDLE;

converse: NOP;

JUMP talk;

{-----IRQ service routines-----}

{---HOST WRITE IRQ---}
iread: SR0=DM(hsr0); {read registers}

SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr1);
AR=SR0 OR AY0;
DM(halfpi)=AR;

SR0=DM(hsr2);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr3);
AR=SR0 OR AY0;
{DM(fullpi)=AR;}

SR0=DM(hsr4);
SR=LSHIFT SR0 by 8 (LO);
AY0=DM(hsr5);
AR=SR0 OR AY0;
{DM(wait)=AR;}

RTI;

{---HOST READ IRQ---}

iwrite: AX0=DM(writereg);
AY0=682; {no. banks HC11 should read}
AR=AX0-AY0;
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IF EQ JUMP wrap;

AR=DM(I0,M1);
DM(hsr0)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=DM(I0,M1);
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;

AR=DM(I0,M1); {sanity checker}
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AX0=DM(writereg); {written}
AR=AX0+1;
DM(writereg)=AR;

RTI;

wrap: AR=0;
DM(writereg)=AR;
AR=0x020;
DM(0x3FE8)=AR; {disable HIP read IRQ}
DM(hsr0)=AR;
DM(hsr1)=AR;
DM(hsr2)=AR;
DM(hsr3)=AR;
DM(hsr4)=AR;
DM(hsr5)=AR;

RTI;

{-----spin echo subroutine-----}

echo: IMASK=0x0000;
MSTAT=0x0000;

tip: AX0=DM(halfpi);
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;

IMASK=0x0001;
SET FL0;
MSTAT=0x0030;
IDLE;

acquire: RESET FL0;
MSTAT=0x0000;
IMASK=0x0000;

AX0=50;
DM(0x3FFD)=AX0;
DM(0x3FFC)=AX0;
AX0=0;
DM(0x3FFB)=AX0;

I0=^data;
L0=0;
CNTR=%data;
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AY0=0xFFF;

IMASK=0x0001;
MSTAT=0x0020;

DO record UNTIL CE;
IDLE;
AX0=DM(bus);
AR=AX0 AND AY0;

record: DM(I0,M1)=AR;

AX0=31;
DM(0x3FFB)=AX0;

MSTAT=0x0000;
IMASK=0x0180;

I0=^data;
L0=0;

AR=DM(I0,M1); {smoothed value}
DM(hsr0)=AR; {filters -- 16bit}
SR=LSHIFT AR BY -8 (LO);
DM(hsr1)=SR0;

AR=DM(I0,M1); {read value}
DM(hsr2)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr3)=SR0;

AR=DM(I0,M1); {sanity checker}
DM(hsr4)=AR;
SR=LSHIFT AR BY -8 (LO);
DM(hsr5)=SR0;

AR=1;
DM(writereg)=AR;

AX0=0x2000;
DM(0x3FE8)=AX0; {enable HIP read IRQ}

JUMP respond;

.ENDMOD;
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* bin2fsh.asm
* modified smartp3.asm to handle all channels
* now allows on-the-fly programming of DSP, 3.2.97
* now allows on-the-fly changing of transmit and receive banks size
* fix handshake byte misalignment, 5.28.97

* RAM VALUES, 256 BYTES INCLUDING STACK

        ORG     $0000

TXHEAD  RMB     2T
TXTAIL  RMB     2T
TXBUF   RMB     140T            ; values to PC
BUFWNM  RMB     2T
RXHEAD  RMB     2T
RXTAIL  RMB     2T
RCVBF   RMB     61T             ; sixty-one values from PC
NMOREN  RMB     1
PROGCNT RMB     1               ; counter for HIP loading
BANKCNT RMB     1               ; counter for BANK adjustment
CHARIN  RMB     1               ; number of characters from PC
BANKOUT RMB     2               ; number of banks from DSP to PC
REMAIN  RMB     1
STATREG RMB     1
TMPVAL  RMB     1

        ORG     $103F           ; Config byte
        FCB     $FF
        ORG     $F800

REGBAS  EQU     $1000           ; Base addr of register block
PORTA   EQU     REGBAS+$00
PORTB   EQU     REGBAS+$04
PORTC   EQU     REGBAS+$03
BAUD    EQU     REGBAS+$2B
SCCR1   EQU     REGBAS+$2C
SCCR2   EQU     REGBAS+$2D
SCSR    EQU     REGBAS+$2E
SCDR    EQU     REGBAS+$2F
OPTION  EQU     REGBAS+$39
COPRST  EQU     REGBAS+$3A
HPRIO   EQU     REGBAS+$3C
CONFIG  EQU     REGBAS+$3F

DSPBAS  EQU     $2000           ; Base addr of DSP registers
HIP0    EQU     DSPBAS+$00
HIP1    EQU     DSPBAS+$01
HIP2    EQU     DSPBAS+$02
HIP3    EQU     DSPBAS+$03
HIP4    EQU     DSPBAS+$04
HIP5    EQU     DSPBAS+$05
HOSTWSR EQU     DSPBAS+$06      ; Host write status register
DSPWSR  EQU     DSPBAS+$07      ; DSP write status register
DIPSW   EQU     $4000           ; DIP switch address

EEORG   EQU     $F800
RESET   EQU     $FFFE

* SYSTEM CONFIGURATION

        SEI             ; DISABLE INTERRUPTS DURING INIT

INIT    LDS     #$00FF  ; Init stack

        LDAA    #$30    ; Init SCI
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        STAA    BAUD    ; 1,8,1,n,9600
        LDAA    #$00    ; RS-232 communcations
        STAA    SCCR1
        LDAA    #$2C
        STAA    SCCR2

* CIRCULAR TRANSMIT (TO PC) BUFFER

        LDX     #TXBUF  ; get address of first location
        STX     TXHEAD  ; initialize head and tail pointers
        STX     TXTAIL

* CIRCULAR RECEIVE (FROM PC) BUFFER

        LDX     #RCVBF  ; get address of first location
        STX     RXHEAD  ; initialize head and tail pointers
        STX     RXTAIL

* INITIALIZE WRAPPING POINTER TO HIP REGISTERS

        LDX     #HIP0   ; get first HIP location
        STX     BUFWNM  ; store pointer

* INITIALIZE COUNTERS and STATUS REGISTER

        CLR     NMOREN  ; number of characters from PC
        CLR     PROGCNT ; number of time DSP load requested
        CLR     BANKCNT ; number of time change bank requested
        CLR     STATREG ; indicate loading or normal mode
        CLR     TMPVAL  ; temporary register

        LDAA    #$06    ; initial number of characters from PC
        STAA    CHARIN  ; number of characters to read in
        LDX     #$01    ; initial number of banks to read
        STX     BANKOUT ; number of banks to read out

        CLI             ; ENABLE INTERRUPTS FOR PROGRAM

* MAIN LOOP

GTIFLP  LDAA    NMOREN  ; load number of characters received
        CMPA    CHARIN  ; compare to the number desired
        BLO     GTIFLP  ; wait if all characters are not received

        LDX     #$0006  ; load denominator with 6
        CLRA
        LDAB    CHARIN  ; load numerator with number characters read
        IDIV            ; number of banks to stuff in IX
        XGDX            ; now in ADDD
        XGDY            ; now in IY, # of banks to stuff into DSP

WTOSTF  LDAA    HOSTWSR ; read status of DSP (if it has read registers)
        LDAA    HOSTWSR ; twice to clear DSP's flag
        ANDA    #$3F    ; mask for pertinent status bits
        CMPA    #$00    ; check if DSP has read last set of values
        BNE     WTOSTF  ; wait if DSP is not ready

STUFF   JSR     GTFRBF  ; go get values from receive buffer
        LDX     BUFWNM  ; load pointer to HIP registers in IX
        STAA    0,X     ; store receive buffer value pointed location
        INX             ; increment HIP address
        CPX     #HIP5   ; check to see if a wraparound it required
        BHI     LOOKAG  ; if yes, go do it
        STX     BUFWNM  ; if no, store address
        JMP     STUFF   ; and stuff until a complete bank is filled
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LOOKAG  LDX     #HIP0   ; one bank is filled
        STX     BUFWNM  ; wraparound
        DEY             ; now, 1-# of DSP banks to stuff
        BNE     WTOSTF  ; wait for DSP to finish reading last bank

MMNLP   LDY     BANKOUT ; # of banks to read from DSP
MAINLP  LDAA    DSPWSR  ; check to see that DSP has written back
        LDAA    DSPWSR  ; twice to clear flag
        ANDA    #$3F    ; mask for pertinent bits
        CMPA    #$3F    ; check status
        BNE     MAINLP  ; wait if not ready

  LDAA     DIPSW ; binary or ascii communications
  CMPA     #$80
  BHS      BIN

  LDAB    HIP0    ; read LSB
        LDAA    HIP1    ; read MSB
        JSR     BTOD    ; binary to ASCII-decimal conversion
        LDAB    HIP2
        LDAA    HIP3
        JSR     BTOD
        LDAB    HIP4
        LDAA    HIP5
        JSR     BTOD

  JMP     COMP

BIN   LDAB    HIP0    ; read LSB
        JSR     STITXBF
        LDAB    HIP1    ; read MSB
        JSR     STITXBF ; binary send to PC
        LDAB    HIP2
        JSR     STITXBF

  LDAB    HIP3
        JSR     STITXBF
        LDAB    HIP4
        JSR     STITXBF
        LDAB    HIP5
        JSR     STITXBF

COMP    DEY             ; 1-# of banks to read from DSP
        BNE     MAINLP  ; read next bank

  LDAA    HIP0    ; trash handshaking bytes: 0x020
        LDAA    HIP1    ;
        LDAA    HIP2
        LDAA    HIP3
        LDAA    HIP4
        LDAA    HIP5

* TEST FOR DIP SWITCH REQUEST

        CLR     TMPVAL  ; clear that temporary register
        LDAA    PROGCNT ; only DSP load if it has been
        CMPA    #2T     ; on for three consecutive loops (N-1)
        BLO     NOHIP   ; no loader request
        INC     TMPVAL  ; increment if time to load
NOHIP   LDAA    TMPVAL  ; check if either
        CMPA    #$00    ; if TMPVAL unaltered
        BEQ     CHECK   ; not yet three loops, check again
        LDAA    STATREG ; check status register
        CMPA    #$01    ; has not been reset yet
        BEQ     CHECK   ; no false triggering of DSP HIP load
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        LDAB    #$0D    ; complete last transaction
        JSR     STITXBF ; and announce LOAD
        JSR     LOAD    ; announce LOAD to PC
        JMP     LOADER  ; go to LOADER for DSP programming

* DIP SWITCH CHECK ROUTINE

CHECK   LDAB    #$0D
        JSR     STITXBF

        LDAA    DIPSW   ; check dip switch: rewrite
        CMPA    #$55    ; if DIP switch is in 0x55 state
        BEQ     PUPCNT  ; increment PROGCNT
        CLR     PROGCNT ; clear count if not 0x55--maybe fluke
        CLR     STATREG ; schmitt trigger state
        JMP     GTIFLP  ; remain in normal operation

PUPCNT  INC     PROGCNT ; increment counter
        JMP     GTIFLP

* LOADER Routine

LOADER  LDAA    #$01    ; HC11 in DSP HIP loading mode
        STAA    STATREG

GTCODE  LDAA    NMOREN  ; load counter of PC characters received
        CMPA    #$3D    ; want 61 characters: 1 length, 60 code
        BLO     GTCODE  ; wait if all characters are not received

        JSR     GTFRBF  ; get length value
        STAA    TMPVAL  ; store temporarily, must extract byte number
        INCA            ; increment
        LDAB    #$18    ; multiply by 24
        MUL
        LDX     #$3C    ; divide number of 20 instruction chunks
        IDIV            ; no. of chunks in IX, rem. bytes in ACCD
        STAB    REMAIN  ; store remainder, use IY to countdown
        XGDX            ; chunks: IX -> ACCD
        XGDY            ; chunks: ACCD -> IY

        LDAA    DSPWSR  ; load contents of DSPWSR
        ORAA    #$40    ; set reset bit for DSP
        STAA    DSPWSR  ; request software reset

        LDAA    TMPVAL  ; get length value back
        STAA    HIP3    ; place in HSR3

BULK    LDAB    #$14    ; counter is 20 instructions
        JSR     PUTCODE ; place 20 instructions

        DEY             ; decrement number of chunks
        BEQ     ENDGAME ; if no more chunks place remainder

        JSR     OKAY    ; otherwise, ask for more from PC

MOCODE  LDAA    NMOREN  ; load counter
        CMPA    #$3C    ; get 60 bytes (20 instructions)
        BLO     MOCODE  ; wait until all 20 are received

        JMP     BULK    ; go place 'em

ENDGAME CLRA            ; for the remainder, after chunks
        LDAB    REMAIN  ; remainder of byte
        LDX     #$03    ; divided by 3
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        IDIV            ; is the number of instructions
        XGDX            ; save the number of instructions
        STAB    TMPVAL  ;

        JSR     OKAY    ; ask for remainder of bytes

ENDCODE LDAA    NMOREN
        CMPA    REMAIN
        BLO     ENDCODE

        LDAB    TMPVAL
        JSR     PUTCODE ; place 'em

        JSR     DONE    ; signify loading done-age to PC

GTBANK  LDAA    NMOREN  ; load counter of PC characters received
        CMPA    #$03    ; want 2 characters: 1 CHARIN, 2 BANKOUT
        BLO     GTBANK  ; wait if all characters are not received

        JSR     GTFRBF  ; get first value
        STAA    CHARIN  ; the new number of characters in
        JSR     GTFRBF  ; get the next value (LSB of bankout)
        STAA    TMPVAL  ; store temporarily
        JSR     GTFRBF  ; get the last value (MSB of bankout)
        LDAB    TMPVAL  ; now MSB:LSB in ADDD
        XGDY            ; now in IY
        STY     BANKOUT ; the new number of banks to read from DSP

        JSR     DONE    ; signify bank done-age, YO!

        JMP     GTIFLP  ; go back to normal routine

* PUT CODE (in DSP) SUBROUTINE : countdown in ACCB

PUTCODE JSR     GTFRBF
        STAA    HIP0
        JSR     GTFRBF
        STAA    HIP1
        JSR     GTFRBF
        STAA    HIP2

        DECB
        BNE     PUTCODE

        RTS

* LOAD NOTIFICATION SUBROUTINE

LOAD    LDAA    NMOREN  ; load number of characters received
        CMPA    #$06    ; compare to the number desired
        BLO     LOAD    ; wait if all characters are not received

        JSR     GTFRBF  ; trash handshake values
        JSR     GTFRBF
        JSR     GTFRBF
        JSR     GTFRBF
        JSR     GTFRBF
        JSR     GTFRBF

        LDY     #$03
ANLOAD  LDAB    #$4C    ; ASCII "L"
        JSR     STITXBF
        LDAB    #$4F    ; ASCII "O"
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        JSR     STITXBF
        LDAB    #$41    ; ASCII "A"
        JSR     STITXBF
        LDAB    #$44    ; ASCII "D"
        JSR     STITXBF
        LDAB    #$20    ; ASCII space
        JSR     STITXBF
        LDAB    #$20    ; ASCII space
        JSR     STITXBF

        DEY
        BNE     ANLOAD
        LDAB    #$0D    ; ASCII carriage return
        JSR     STITXBF

        RTS

* OKAY NOTIFICATION SUBROUTINE to prompt next 20 instruction chunk

OKAY    LDAB    #$4F    ; ASCII "O"
        JSR     STITXBF
        LDAB    #$4B    ; ASCII "K"
        JSR     STITXBF
        LDAB    #$41    ; ASCII "A"
        JSR     STITXBF
        LDAB    #$59    ; ASCII "Y"
        JSR     STITXBF
        LDAB    #$0D    ; ASCII carriage return
        JSR     STITXBF

        RTS

* DONE NOTIFICATION SUBROUTINE to conclude RS-232 transfers

DONE    LDAB    #$44    ; ASCII "D"
        JSR     STITXBF
        LDAB    #$4F    ; ASCII "O"
        JSR     STITXBF
        LDAB    #$4E    ; ASCII "N"
        JSR     STITXBF
        LDAB    #$45    ; ASCII "E"
        JSR     STITXBF
        LDAB    #$0D    ; ASCII carriage return
        JSR     STITXBF

        RTS

* STUFF IN TRANSMIT BUFFER ROUTINE : VALUE IN ACCB

STITXBF LDX     TXTAIL  ; load address of end of transmit buffer
        STAB    0,X     ; store value in buffer
        INX             ; increment address
        CPX     #BUFWNM ; compare to end of buffer allocation
        BNE     NOWRAP
        LDX     #TXBUF  ; wraparound if at end
NOWRAP  CPX     TXHEAD  ; compare to head pointer
        BEQ     NOWRAP  ; if same, wait until buffer empties
        STX     TXTAIL  ; then, store new pointer address
        LDAB    SCCR2   ; load SCI control register
        ORAB    #$C0    ; turn on TX interrupt
        STAB    SCCR2   ; store SCI control register value
        RTS
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* SCI INTERRUPT ROUTINE

SCIINT  LDAA    SCSR    ; (actually SCSR2) load SCI status register
        BITA    #$20    ; check that a full character is received
        BNE     HDLRCV  ; if so, stuff in receive buffer
        LDX     TXHEAD  ; otherwise load TX buffer head pointer
        CPX     TXTAIL  ; compare to TX buffer tail pointer
        BEQ     GTOUT   ; if so, get out (done with values for PC)
        JMP     GOBB    ; otherwise, empty transmit buffer to PC
GTOUT   LDAA    SCCR2   ; load SCI control register
        ANDA    #$3F    ; turn off SCI transmit interrupt
        STAA    SCCR2   ; store control register
        RTI             ; return from interrupt
GOBB    LDX     TXHEAD  ; load head pointer of transmit buffer
        LDAA    0,X     ; get value from buffer
        STAA    SCDR    ; send out SCI
        INX             ; increment address
        CPX     #BUFWNM ; compare to end of allocated memory
        BEQ     WRHD    ; wrap pointer if at end
        STX     TXHEAD  ; store next address of transmit pointer
        RTI             ; return from interrupt
WRHD    LDX     #TXBUF  ; wrapping pointer
        STX     TXHEAD  ; to beginning of allocated memory
        RTI             ; return from interrupt
HDLRCV  LDAB    SCDR    ; read SCI received character
        JSR     STINRCV ; store in receive buffer
        RTI             ; return from interrupt

* BINARY TO ASCII CONVERSION TO RS-232

BTOD    LDX     #10000T ; 1000 *DECIMAL*
        IDIV
        PSHB            ; push remainder ( 0 <= r < 10000 )
        PSHA
        PSHX            ; push quotient
        PULA            ; throw away MSB of quotient (q < 5 for 12 bit)
        PULB            ; output LSB of quotient
        ADDB    #$30
        JSR     STITXBF ; place ASCII-decimal in transmit buffer

        PULA            ; Pull remainder ( 0 <= r < 1000)
        PULB
        LDX     #1000T   ; 100   decimal
        IDIV
        PSHB            ; push remainder
        PSHA
        PSHX            ; push quotient
        PULA            ; throw away MSB of quotient
        PULB            ; output LSB of quotient
        ADDB    #$30
        JSR     STITXBF ; place ASCII-decimal in transmit buffer

        PULA
        PULB
        LDX     #100T   ; 100   decimal
        IDIV
        PSHB            ; push remainder
        PSHX            ; push quotient
        PULA            ; throw away MSB of quotient
        PULB            ; output LSB of quotient
        ADDB    #$30
        JSR     STITXBF ; place ASCII-decimal in transmit buffer

        CLRA



114

        PULB
        LDX     #10T
        IDIV
        PSHB            ; push remainder
        PSHX            ; push quotient
        PULA            ; throw away MSB of quotient
        PULB            ; output LSB of quotient
        ADDB    #$30
        JSR     STITXBF
        PULB            ; restore remainder
        ADDB    #$30
        JSR     STITXBF ; OUTPUT REMANINDER
        LDAB    #$20
        JSR     STITXBF
        RTS

* GET FROM RECEIVE BUFFER ROUTINE : VALUE RETURNED IN ACCA

GTFRBF  LDX     RXHEAD  ; get head of receive buffer address
        LDAA    0,X     ; read value at that address
        DEC     NMOREN  ; decrement number of values read from PC
        INX             ; increment value of address
        CPX     #NMOREN ; compare to end of allocated memory
        BEQ     WRRHD   ; wrap pointer is needed
        STX     RXHEAD  ; store new address
        RTS             ; return from subroutine
WRRHD   LDX     #RCVBF  ; wrap pointer by setting new address
        STX     RXHEAD  ; to beginning of allocated memory
        RTS             ; return from subroutine

* STUFF IN RECEIVE ROUTINE

STINRCV LDX     RXTAIL  ; load end of receive buffer address
        STAB    0,X     ; store value at end of buffer
        INC     NMOREN  ; increment the number of values from PC
        INX             ; increment address of end of receive buffer
        CPX     #NMOREN ; compare to end of allocated memory
        BNE     NORWRAP ; check to see if wraparound need
        LDX     #RCVBF  ; if so, use beginning of allocated memory
NORWRAP STX     RXTAIL  ; store new pointer address
        RTS             ; return from subroutine

* STARTUP VECTOR

        ORG     $FFFE
        FDB     $F800

* INTERRUPT VECTOR

        ORG     $FFD6
        FDB     SCIINT


