Asynchronous logic automata

David A. Dalrymple, Neil A. Gershenfeld, and Kailiang Chen

Massachusetts Institute of Technology

Abstract. We present a class of device, termed Asynchronous
Logic Automata (ALA), for practical reconfigurable computing
that may be categorized as an asynchronous lattice gas automa-
ton, as a Petri net, as a field-programmable gate array, and as
charge-domain logic. ALA combine the best features of each:
locality, consistent asynchronous behavior, easy reconfiguration,
and charge-carrier conservation. ALA are thus “closer to physics”
(at least, the physics used in classical computation) than classi-
cal computers or gate arrays with global interconnect and clock-
ing, and may therefore be physically implemented with more
desirable properties such as speed, power, and heat dissipation.

1 Introduction

Physics, above the atomic level, is inherently local, and computation,
like every other process, relies on physics. Thus, programming models
which assume non-local processes, such as data buses, random access
memory, and global clocking, must be implemented at a slow enough
speed to allow local interactions to simulate the non-local effects which
are assumed. Since such models do not take physical locality into ac-
count, even local effects are limited to the speed of the false non-local
effects, by a global clock which regulates all operations.

In computing today, many observers agree that there is a practical
physical speed limit for the venerable von Neumann model (see for in-
stance [1]), and that the bulk of future speed increases will derive from
parallelism in some form. Chipmakers are currently working to pack as
many processors as they can into one box to achieve this parallelism,
but in doing so, they are moving even further from the locality that is
necessary for a direct implementation as physics. At the other end of the
abstraction spectrum, while sequential programming models can be gen-
eralized to use multiple parallel threads, such models are often clumsy
and do not reflect the physical location of the threads relative to each
other or memory.

2 Dalrymple, Gershenfeld and Chen

In addition, research has long suggested that asynchronous (or “self-
timed”) devices consume less power and dissipate less heat than typical
clocked devices [2]. However, traditional microarchitectures require sig-
nificant book-keeping overhead to synchronize various functional blocks,
due to the nature of their instructions, which must be executed in se-
quence. Most asynchronous designs to present have derived their perfor-
mance benefits from clever pipelining and power distribution rather than
true asynchrony — known as “globally asynchronous, locally synchronous”
design — and often this is not enough to offset the overhead [3].

These shortcomings are accepted because of the tremendous body
of existing code written in sequential fashion, which is expected to run
on the latest hardware. However, by removing the assumption of back-
wards compatibility, there is an opportunity to create a new, disruptive
programming model which is more efficient to physically implement. In
particular, such a model could scale favorably to an arbitrary number
of parallel elements, to larger problem sizes, and to faster, smaller pro-
cess technologies. Potentially, this may have eventual impact across the
computing industry, particularly in high-performance computing. In ad-
dition, it could conceivably be an enabling technology for the Singularity
(see [4]).

In Sect. 2, we describe the Logic CA, a synchronous cellular automa-
ton which is the basis of the ALA. In Sect. 3, we introduce the ALA as
a modification of the Logic CA. In Sect. 4, we discuss the relationship
to past work, and in Sect. 5 we identify future work.

2 Logic CA

Asynchronous Logic Automata (ALA) are based on an earlier model,
a cellular automaton (CA), known as the Logic CA. It may be conve-
nient to understand first the Logic CA, which has closer ties to previous
work (e.g. [5]), particularly if the reader is familiar with these types of
constructions.

The Logic CA consists of cells with 8 neighbors and 9 bits of state.
The state bits are divided into 8 configuration bits and 1 dynamic state
bit. The configuration bits are further divided into 2 gate bits which
choose among the four allowed Boolean functions ({AND, OR, XOR,
NAND}) and 6 input bits which choose among the 36 possible pairs of
(potentially identical) inputs chosen from the 8 neighbors (3-8:(8—1)+8).
At each time step, a cell examines the dynamic state bit of its selected
inputs, performs the selected Boolean operation on these inputs, and
sets its own dynamic state to the result.

Asynchronous logic automata 3

Mathematically, an instance of the Logic CA can be described as a
series of global states S; (¢ € Ng) each composed of local states s, (; ;) €
{0,1} (i,7 € Z) and a set of constant configuration elements

¢ij) €C= ({AND,OR, XOR, NAND} x ({~1,0,1}2 — {(0,0)})?)
= {AND,OR, XOR, NAND}

X{(lv O)a (17 1)a (07 1), (_1» 1)7 (_17 O)» (_1» _1)7 (Ov _1)7 (1, —1)}

x{(1,0),(1,1),(0,1),(=1,1),(=1,0),(=1,-1),(0,-1),(1,-1)}

(note that there is a bijection between C and {0,1}8, 8 bits) such
that

if (et =AND St j)+ ()2 D Stlii)+(es)s
siiis = 1 leaqph = OR St,(0)+ o)z V S6,(0)+Hegn)s
) (et = XOR st)tz @ St +eqn)s

if (i) = NAND =(8t,35,5)+(ciig))2 N St,605)+(ci)s)

Although the Logic CA is useful for many applications, we identified
two major problems with it, leading to the development of ALA:

1. Lack of Reversible/Adiabatic Logic. The system does not em-
ploy conservative logic [6] or adiabatic computing [7], which is nec-
essary to truly represent physical resources.

2. Global Clock. The clock is global — clearly a non-local effect. Cel-
lular automata are not fundamentally required to have a global clock
to perform universal computation [8, 9].

3 Asynchronous logic automata

We have discovered a new approach, inspired by both lattice-gas the-
ory [10] and Petri net theory [11], that resolves the above problems.

By “lattice gas” we mean a model similar to cellular automata in
which the cells communicate by means of particles with velocity as op-
posed to broadcasted states. Practically, this means that the information
transmitted by a cell to each of its neighbors is independent in a lattice
gas, where in a cellular automaton these transmissions are identical. By
convention, a lattice gas also has certain symmetries and conservation
properties that intuitively approximate an ideal gas [12], and in some
cases, numerically approximate an ideal gas [13].

Meanwhile, Petri nets are a broad and complex theory; we are pri-
marily concerned with the subclass known as “marked graphs” (a detailed

4 Dalrymple, Gershenfeld and Chen

explanation can be found in [14]). In short, a marked graph is a graph
whose edges can be occupied at any given time by zero or more tokens.
According to certain conditions on the tokens in edges neighboring a
node of the graph, the node may be allowed to “fire” (at any time as
long as the conditions are met), by performing some operations on the
tokens (such as moving a token from one of its edges to another or simply
consuming a token from an edge).

0 0
1 1
N 1 1A
1 1
0 0
Q 3
1 1
[e
P R
1 1
q 0
0 0
1 1
o 1N
1 1
0 0

Fig. 1. Edges of one cell in the new approach

Our new approach merges these with the existing Logic CA as follows.
We remove the global clock and the bit of dynamic state in each cell,
and replace the neighborhood broadcasts with a set of four edges between
neighboring cells, each containing zero or one tokens, thus comprising a
bit of state (see Fig. 1). Between each pair of cells, in each direction,
we have a pair of edges, one to represent a “0” signal, and the other a
“1” signal. Note that each pair of edges could be considered one edge
which can carry a “0” token or a “1” token. Instead of each cell being
configured to read the appropriate inputs, this data is now represented
by an “active” bit in each edge. Then, each cell becomes a stateless node
(except the gate type) in this graph, which can fire on the conditions
that all its active inputs are providing either a “0” token or a “1” token
and that none of its active output edges is currently occupied by a token
of either type. When firing, it consumes the input tokens, removing them
from the input edges, performs its configured function, and deposits the
result to the appropriate output edges (see Fig. 2 for an example of a 2-

Asynchronous logic automata 5

input, 2-output AND gate firing). As it is a marked graph, the behavior
of this model is well-defined even without any assumptions regarding
the timing of the computations, except that each computation will fire
in some finite length of time after the preconditions are met. The model
now operates asynchronously, and removes the need not only for a global
clock, but any clock at all.

We have also introduced explicit accounting for the creation and
destruction of tokens instead of implicitly doing both in every oper-
ation, as with traditional CMOS logic. For instance, in Fig. 2, since
there are equally many inputs and outputs, no tokens must be created
or destroyed. While the model still uses the same irreversible Boolean
functions, these functions can be thought of as being simulated by con-
servative logic which is taking in constants and dispersing garbage [6],
enabling an easy pricing of the cost of non-conservatism in any given
configuration.

In addition, this model adapts much more easily to take advantage
of adiabatic logic design; for instance, when a cell is being used only to
ferry tokens from one place to another (e.g. an inverter, shown in Fig. 3),
it can do so physically, instead of using a traditional, charge-dumping
CMOS stage.

6 Dalrymple, Gershenfeld and Chen

(a) Firing conditions met (b) Collect inputs; perform computa-
tion

(c) Distribute result

Fig. 2. A cell firing; note that despite the loss of information, tokens are
conserved in this example

Asynchronous logic automata

0 - 0
L -~
1 ——<< 1
oo, e NOT [e
oo oo

(a) A token is output by the cell to the left

0 0
1 =<z N 1
°
e e NOT [« e
e e

(b) The token now passes to the right cell

Fig. 3. A bit travels left to right through an inverting cell

Dalrymple, Gershenfeld and Chen

Figures 4 and 5 show the general concept of how such cells could be
implemented using so-called “bucket brigade”, or charge-domain logic.

Wire Cell Inverter Cell Wire Cell
“0"|Wire AD B0 “0”|Wire
LI \ H»—l_l—AL
M / M. M,
A0 Cao \ / co Ceo BO Coo
~,5 Ao» 3 |eB0
- /\ A || jeB1 -
F\ Wk
/ \
1" Wire Al / \ 17| Wire
T L T T
h{m CM Mc1 — CC1 .\‘151 TCB"
‘ Al f la— B0
= Al-»{ || Bl =
vl

Fig. 4. Transistor-level effects of configured wire and inverter cells

A0
Al

—B0
—RI

—

AO_{ BD_% B].ci }_BO

Al }—B]

L e
Vo J Vo

Fig. 5. Expansion of “switch” block from Fig. 4

Asynchronous logic automata 9

Note the following possible ALA variations:

1. No Diagonals. Connections may only be present between vertically
or horizontally adjacent cells, to simplify circuit layout.

2. Multiple Signals. More than four token-storing edges may connect
neighboring cells, allowing the conveyance of more parallel informa-
tion in the same period of time.

3. More Functions. The class of possible functions executed by each
cell need not be limited to {AND, OR, XOR, NAND} but may in-
clude any function f: {0,1,0}" — {0,1,0}" where n is the number
of neighbors of each cell (for n = 8 there are 43046721 possible func-
tions). A cell executing function f may fire if f’s present output is
not ()" and every non-empty element of the output points to either
an inactive or empty set of output edges. Then each of those out-
put edges would become populated with the value specified by f’s
output. There is a tradeoff between the number of functions allowed
and the number of configuration bits in each cell needed to specify
the function.

4 History

The history begins with the cellular automata (CAs) of von Neumann [5],
designed to explore the theory of self-replicating machines in a mathe-
matical way (though never finished). Note that this was some time after
he completed the architecture for the EDVAC project [15], which has
come to be known as “the von Neumann architecture.” Many papers
since then can be found examining (mostly 2-state) CAs, and there are
a few directions to prove simple CA universality — Alvy Ray Smith’s [16],
E. Roger Banks’ [17], and Matthew Cook’s more recent Rule 110 con-
struction [18]. However, while interesting from the point of view of com-
putability theory, classical CAs clearly over-constrain algorithms to be-
yond the point of practicality, except in a small class of problems related
to physical simulation (for instance, see [13]).

Another related sub-field is that of field-programmable gate arrays
(FPGAs). Gate arrays have evolved over time from sum-product net-
works such as Shoup’s [19] and other acyclic, memory-less structures
such as Minnick’s [20] to the complex, non-local constructions of today’s
commercial offerings, yet skipping over synchronous and sequential, but
simplified local-effect cells.

The tradition of parallel programming languages, from Occam [21]
to Erlang [22] to Fortress [23] is also of interest. Although they are de-
signed for clusters of standard machines (possibly with multiple proces-
sors sharing access to a single, separate memory), they introduce work

10 Dalrymple, Gershenfeld and Chen

distribution techniques and programming language ideas that are likely
to prove useful in the practical application of our work.

Finally, the Connection Machine [24] was designed with a similar mo-
tivation — merging processing and memory into a homogeneous substrate
— but as the name indicates, included many non-local connections: “In an
abstract sense, the Connection Machine is a universal cellular automa-
ton with an additional mechanism added for non-local communication.
In other words, the Connection Machine hardware hides the details."
We are primarily concerned with exposing the details, so that the pro-
grammer can decide on resource trade-offs dynamically. However, the
implementation of Lisp on the Connection Machine [25] introduces con-
cepts such as xectors which are likely to be useful in the implementation
of functional programming languages in our architecture.

One key element of our approach that is not present in any of these
models is that of formal conformance to physics:

— classical CAs are an “overshoot” — imposing too many constraints
between space and time above those of physics;

— gate arrays have become non-local and are trending further away

from local interactions;

practical parallel languages accept the architecture of commercial

computers and simply make the best of it in software; and

— the Connection Machine allows non-local communication by hiding
physical details.

Also, at least as important as this is the fact that our model operates
precisely without a global clock, while the four models above do not.
This decreases power requirements and heat dissipation, while increasing
overall speed.

5 Future work

The primary disadvantage to practical fabrication and use of ALA in
their present form is the need to simultaneously initialize all cells with
the configuration data before useful computation can be performed. We
are currently investigating various approaches to solving this problem,
such as a protocol for loading the data in to uninitialized space from the
edges, by specifying a forwarding direction after each cell is configured
and then propagating a final start signal when initialization is finished
and computing can begin. We are also developing a hierarchical, module-
based design environment for computing this configuration data on a
traditional PC.

6

Asynchronous logic automata 11

Conclusion

We have presented a new model which merges lattice gases, Petri nets,
charge-domain logic, and reconfigurable logic. This model represents a
simple strategy for asynchronous logic design: making the operations
asynchronous at the bit level, and not just at the level of pipelines and
functional blocks. It is also a potentially faster, more efficient, and lower-
power alternative to traditional FPGAs, or to general-purpose computers
for highly parallelizable tasks.

References

(1

2]
3l
4]
(5]
(6]
7l

(8]

Bl

[10]
[11]

(12]

(13]

Ronen, R., Mendelson, A., Lai, K., Lu, S.L., Pollack, F., Shen, J.P.: Com-
ing challenges in microarchitecture and architecture. Proceedings of the
IEEE 89(3) (2001) 325-340

Werner, T., Akella, V.: Asynchronous processor survey. Computer 30(11)
(1997) 67-76

Geer, D.: Is it time for clockless chips? Computer 38(3) (March 2005)
18-21

Kurzweil, R.: The Singularity Is Near : When Humans Transcend Biology.
Viking Adult (September 2005)

von Neumann, J.: Theory of Self-Reproducing Automata. University of
Illinois Press (1966)

Fredkin, E., Toffoli, T.: Conservative logic. International Journal of
Theoretical Physics 21(3) (April 1982) 219-253

Denker, J.S.: A review of adiabatic computing. In: Low Power Electronics,
1994. Digest of Technical Papers., IEEE Symposium. (1994) 94-97
Morita, K., Imai, K.: Logical universality and self-reproduction in re-
versible cellular automata. In: ICES ’96: Proceedings of the First Inter-
national Conference on Evolvable Systems, London, UK, Springer-Verlag
(1996) 152-166

Lee, J., Peper, F., Adachi, S., Morita, K., Mashiko, S.: Reversible compu-
tation in asynchronous cellular automata. In: UMC ’02: Proceedings of
the Third International Conference on Unconventional Models of Com-
putation, London, UK, Springer-Verlag (2002) 220-229

Toffoli, T., Capobianco, S., Mentrasti, P.. When — and how — can a
cellular automaton be rewritten as a lattice gas? (September 2007)
Petri, C.A.: Nets, time and space. Theoretical Computer Science 153(1-
2) (January 1996) 3-48

Hénon, M.: On the relation between lattice gases and cellular automata.
In: Discrete Kinetic Theory, Lattice Gas Dynamics, and Foundations of
Hydrodynamics. World Scientific (1989) 160-161

Frisch, U., d’Humiéres, D., Hasslacher, B., Lallemand, P., Pomeau, Y.,
Rivet, J.P.: Lattice gas hydrodynamics in two and three dimensions. In:
Lattice-Gas Methods for Partial Differential Equations. Addison-Wesley
(1990) 77-135

12

[14]

[15]
[16]
[17]
[18]
[19]
20]
21]
[22]

23]

24]

25]

Dalrymple, Gershenfeld and Chen

Murata, T.: State equation, controllability, and maximal matchings of
petri nets. IEEE Transactions on Automatic Control 22(3) (1977) 412—
416

von Neumann, J.: First draft of a report on the EDVAC. IEEE Annals
of the History of Computing 15(4) (1993) 27-75

Smith, A.R.: Cellular Automata Theory. PhD thesis, Stanford University
(1970)

Banks, E.R.: Cellular Automata. Technical Report AIM-198, MIT (June
1970)

Cook, M.: Universality in elementary cellular automata. Complex Sys-
tems 15(1) (2004)

Shoup, R.G.: Programmable Cellular Logic Arrays. PhD thesis, Carnegie
Mellon University (1970)

Minnick, R.C.: Cutpoint cellular logic. IEEE Transactions on Electronic
Computers EC-13(6) (December 1964) 685-698

Roscoe, A.W., Hoare, C.A.R.: The laws of Occam programming. Theo-
retical Computer Science 60(2) (September 1988) 177-229

Armstrong, J., Virding, R., Wikstrom, C., Williams, M.: Concurrent
Programming in Erlang, Second Edition. Prentice-Hall (1996)

Steele, G.L., Allen, E., Chase, D., Luchangco, V., Maessen, J.W., Ryu,
S., Tobin-Hochstadt, S.: The Fortress Language Specification. Technical
report, Sun Microsystems (March 2007)

Hillis, W.D.: The Connection Machine. MIT Press, Cambridge, MA
(1985)

Steele, G.L., Hillis, W.D.: Connection Machine Lisp: fine-grained parallel
symbolic processing. ACM Press (1986)

